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АНОТАЦІЯ 

Лисий А. М. Кіберфізичні системи моніторингу дефектів фотоелектричних 

модулів сонячних електростанцій. – Кваліфікаційна наукова праця на правах 

рукопису. 

Дисертація на здобуття наукового ступеня доктора філософії з галузі знань 

12 Інформаційні технології за спеціальністю 123 Комп’ютерна інженерія. – 

Хмельницький національний університет, Хмельницький. 2026. 

Актуальною науково-прикладною задачею є підвищення пожежної безпеки 

експлуатування об’єктів сонячної енергетики, що переважно залежать від 

результатів моніторингу фотоелектричних модулів, виявлення та усунення їх 

дефектів. Традиційні методи моніторингу не завжди дають змогу ефективно 

виявляти пожежонебезпечні дефекти фотоелектричних модулів сонячних 

електростанцій. Тому у світовій практиці дедалі активніше впроваджуються 

автоматизовані системи моніторингу на базі безпілотних літальних апаратів 

(БПЛА), концепції Інтернету речей. 

У дисертації здійснено аналіз сучасного стану, методів та засобів 

моніторингу дефектів фотоелектричних модулів сонячних електростанцій. У 

роботі розроблено архітектуру і метод функціонування кіберфізичних систем 

моніторингу дефектів фотоелектричних модулів сонячних електростанцій на 

основі концепції периферійно-хмарної обробки даних, а також методи моніторингу 

дефектів фотоелектричних модулів сонячних електростанцій, які покращують 

ефективність збору, точність розпізнавання та виявлення пожежонебезпечного 

режиму функціонування модулів з використанням безпілотних літальних апаратів 

та технології диспетчерського управління та збору даних. Здійснено постановку 

експериментів і проведено з розробленими програмно-апаратними засобами 

експериментальні дослідження. 

Об’єктом дослідження є процес моніторингу дефектів фотоелектричних 

модулів сонячних електростанцій з використанням програмно-апаратних засобів.  

Предметом дослідження є методи й засоби кіберфізичних систем 

моніторингу дефектів фотоелектричних модулів сонячних електростанцій з 
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використанням програмно-апаратних засобів з розподіленою обробкою даних.  

Метою дисертаційного дослідження є забезпечення оперативного 

розрізнення режимів роботи фотоелектричних модулів як пожежа, пожежна 

небезпека, спрацювання захисту на основі застосування архітектури кіберфізичних 

систем з розподіленою обробкою даних моніторингу дефектів фотоелектричних 

модулів сонячних електростанцій.  

Наукова новизна отриманих результатів полягає в наступному: 

1. Уперше розроблено архітектуру кіберфізичних систем моніторингу 

дефектів фотоелектричних модулів сонячних електростанцій на основі концепції 

периферійно-хмарного розподілу обробки даних. Новизною архітектури є 

формування її на принципах розподілу обчислень між бортовою і наземною 

системами управління БПЛА, системою диспетчерського управління і хмарним 

сервісом, що дозволяє здійснювати раціональне опрацювання даних та збереження 

результатів моніторингу дефектів фотоелектричних модулів із забезпеченням 

низької затримки обробки даних, а також утримувати камери за заданим кутом 

спостереження, автоматично налаштовувати насиченість колірної палітри 

зображення, визначати режими роботи фотоелектричних модулів.  

2. Удосконалено метод обробки даних програмно-апаратними засобами 

бортової системи управління БПЛА при моніторингу дефектів фотоелектричних 

модулів, що відрізняється уведенням моделі визначення оптимального напрямку 

візування камер з використанням формули Родрігеса для автоматичного 

позиціонування та мінімізації впливу сонячних відблисків на основі високоточного 

геопросторового позиціонування GPS RTK, застосовано ансамблювання 

різнопалітрових термограм та RGB зображень, з використанням просторової 

роздільної здатності зображення та формули гаверсинуса реалізовано 

перетворення піксельних координат виявлених дефектів у географічні координати 

з передачею результатів у форматі обміну даними JSON/KML. Це дозволяє досягти 

сантиметрової точності позиціонування дефектів, зменшити обсяг переданої з 

бортової до наземної системи управління інформації завдяки обробці її на борту та 

передачі лише релевантних зображень. 
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3. Удосконалено метод ансамблювання різнопалітрових термограм та RGB 

зображень для виявлення дефектів фотоелектричних модулів, який на першому 

етапі мультимодельного ансамблювання термограм відрізняється розробкою 

математичної моделі класифікації дефектів за їх відносною площею щодо площі 

одного фотоелемента. Це покладено в основу селективної фільтрації детекцій 

окремо для двоколірних і триколірних термограм та подальшого селективного 

комбінування результатів сегментації, отриманих за допомогою моделі згорткової 

нейронної мережі YOLOv12m-seg, що запобігає втраті пожежонебезпечних 

дефектів менших за розмір фотоелемента. На другому етапі крос-модальної 

інтеграції даних уведено постобробку із заміною даних у червоному каналі RGB 

зображення на контури сегментованих дефектів термограм для створення 

композиційного термо-RGB зображення, що забезпечило релевантність передачі 

даних з БПЛА на наземну систему управління зі скороченням загального часу 

обробки даних з одного модуля на 32 %, а також підвищено середню точність 

виявлення пожежонебезпечних дефектів на 2-3 %. 

4. Уперше розроблено метод функціонування кіберфізичних систем 

моніторингу дефектів фотоелектричних модулів сонячних електростанцій. 

Новизна методу полягає у реалізації концепції периферійно-хмарної обробки даних 

шляхом розподілу функцій між такими складовими: бортовою системою 

управління БПЛА, яка забезпечує ансамблювання та передавання релевантних 

зображень фотоелектричних модулів у зелено-синьому спектрі з червоною лінією 

обрису дефектів, сегментованих за термографічними даними; наземною системою 

управління, що виконує визначення номера дефектного рядка фотоелектричного 

модуля та перевірку істинності режиму його роботи на основі встановленої 

сукупності інформативних ознак; системою диспетчерського управління та збору 

даних, яка забезпечує передавання логічних змінних стану датчиків модулів на 

наземну систему управління; хмарним сервісом, який забезпечує передавання та 

збереження зображень, GPS-поправок і координат модулів через систему обміну 

повідомленнями, побудовану на хмарній платформі Microsoft Azure. Це дозволяє 

отримати значення інтегрального показника точності та повноти виявлення 
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дефектів не менше 90 %, розрізнити режими роботи фотоелектричних модулів як 

пожежа, пожежна небезпека, спрацювання захисту, що покращує автоматизацію 

процесу моніторингу фотоелектричних модулів сонячних електростанцій та 

підвищує їх пожежну безпеку експлуатування. 

Обґрунтованість і достовірність наукових положень, висновків і 

рекомендацій. Обґрунтованість результатів забезпечується коректним 

застосуванням математичного апарату для опису управління програмно-

апаратними засобами моніторингу, використанням відомих програмних 

інструментів та попередньо навчених моделей глибокого навчання, проведенням 

експериментів у реальних умовах експлуатації фотоелектричних модулів сонячних 

електростанцій, зокрема на діючій сонячній електростанції, де було виявлено 

дефекти, у тому числі пожежонебезпечні, що підтвердило значущу перевагу 

запропонованих підходів над базовими методами. 

Практичне значення отриманих результатів полягає у наступному:  

1) результатом застосування концепції периферійно-хмарного розподілу 

обробки даних в архітектурі кіберфізичних систем моніторингу дефектів 

фотоелектричних модулів сонячних електростанцій стало забезпечення 

раціонального їх функціонування, опрацювання даних і збереження результатів 

моніторингу із забезпеченням низької затримки у реальному часі, утримання камер 

з заданим кутом спостереження, автоматичного налаштування насиченості 

колірної палітри зображення, прогнозування небезпек і сценаріїв їх розвитку та 

прийняття рішення щодо реагування при виникненні пожежонебезпечного режиму 

функціонування; 

2) застосування моделі згорткової нейронної мережі YOLOv12m-seg за 

архітектурним принципом anchor-free з комплексуванням методів і алгоритмів 

обробки зображень дозволяє отримати значення інтегрального показника точності 

та повноти виявлення дефектів за метрикою F1-score більше 90 %, що свідчить про 

достатньо високі показники якості автоматичного розпізнавання дефектів; 

3) на основі застосування методу ансамблювання різнопалітрових термограм 

та RGB зображень для виявлення дефектів фотоелектричних модулів з 
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використанням моделі згорткової нейронної мережі YOLOv12m-seg підвищено 

значення показника середньої точності детекції дефектів фотоелектричних модулів 

сонячних електростанцій на 2-3 %; 

4) розроблено алгоритм застосування кіберфізичних систем моніторингу 

фотоелектричних модулів сонячних електростанцій для виявлення 

пожежонебезпечного режиму роботи та встановлення причини за сукупністю ознак 

з використанням БПЛА та системи  диспетчерського управління і збору даних; 

5) розроблено систему автоматичного оповіщення про появу підвищеної і 

пожежонебезпечної температури на поверхні фотоелектричного модуля сонячної 

електростанції з виробленням відповідних логічних змінних для розрізнення 

режимів роботи фотоелектричних модулів як пожежа, пожежна небезпека, 

спрацювання захисту. 

Теоретичні та практичні результати дослідження впроваджені: у компанії 

«Drone UA» ТОВ «Роботікс Дістрібьюшн» при розробці проєкту комплексної 

системи моніторингу технічного стану сонячних електростанцій (акт 

впровадження від 27.11.2025); у ТОВ «Nolt technologies» при розробці веб-додатку 

контролю технічного стану панелей сонячних електростанцій із 

застосуванням технологій штучного інтелекту, машинного навчання та інтернету 

речей (акт впровадження від 26.11.2025); в освітньому процесі Хмельницького 

національного університету при викладанні дисциплін на кафедрі комп’ютерної 

інженерії та інформаційних систем для спеціальності 126 Інформаційні системи та 

технології, 123 Комп’ютерна інженерія (акт впровадження від 25.11.2025); у 

державній організації УКРНОІВІ при поданні заявки u202504589 на корисну 

модель (лист від 25.09.2025 № 16918/ЗУ/25); у науковій діяльності Національної 

академії Державної прикордонної служби України при розробці НДР «Методика 

опрацювання розрахунків з утримання прикордонної інфраструктури на ділянках 

державного кордону», шифр 0124U004798 (акт впровадження від 30.12.2025). 

У вступі представлено обґрунтування актуальності наукового завдання 

щодо розробки методів і засобів моніторингу дефектів фотоелектричних модулів 

сонячних електростанцій із використанням програмно-апаратних засобів 
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безпілотних літальних апаратів і системи диспетчерського управління та збору 

даних. Також представлено зв’язок тематики дослідження з напрямками наукових 

досліджень відомих дослідників цієї проблеми в світі та відображено основні 

наукові результати роботи та її практичне значення. 

У першому розділі здійснено аналіз предметної області дослідження, 

зроблено аналіз сучасного стану моніторингу дефектів фотоелектричних модулів 

сонячних електростанцій, основних їх видів, а також проведено аналіз засобів і 

сучасних методів моніторингу дефектів фотоелектричних модулів сонячних 

електростанцій. Здійснено постановку задачі дослідження, а також підведено 

підсумки з отриманих результатів.  

У другому розділі представлено розробку архітектури кіберфізичних систем 

моніторингу дефектів фотоелектричних модулів сонячних електростанцій на 

основі концепції периферійно-хмарної обробки даних. Проведено дослідження 

обчислювального середовища архітектури кіберфізичних систем моніторингу 

дефектів фотоелектричних модулів сонячних електростанцій, обґрунтовано 

програмно-апаратні засоби архітектури на основі застосування згорткової 

нейронної мережі на борту БПЛА, а також підведено підсумки з отриманих 

результатів. 

У третьому розділі представлено удосконалений метод обробки даних 

програмно-апаратними засобами бортової системи управління БПЛА при 

моніторингу дефектів фотоелектричних модулів, удосконалений метод 

ансамблювання різнопалітрових термограм та RGB зображень для виявлення 

дефектів фотоелектричних модулів з використанням моделі згорткової нейронної 

мережі YOLOv12m-seg, розроблений метод функціонування кіберфізичних систем 

моніторингу дефектів фотоелектричних модулів сонячних електростанцій, а також 

підведено підсумки з отриманих результатів. 

У четвертому розділі представлено експериментальне дослідження 

ефективності різних версій моделей YOLO для задачі моніторингу дефектів 

фотоелектричних модулів сонячних електростанцій, оцінено технічні 

характеристики та можливості кіберфізичних систем моніторингу дефектів. 
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Представлено результати експериментальних досліджень виявлення дефектів 

фотоелектричних модулів сонячних електростанцій, результати підбору 

технологічних параметрів програмно-апаратних засобів безпілотних літальних 

апаратів в режимі реального часу, результати оцінки впливу освітленості і 

хмарності на ефективність моніторингу дефектів, а також підведено підсумки з 

отриманих результатів. 

У висновках представлено отримані наукові та практичні результати 

дослідження. 

У додатках представлено наукові публікації, в яких відображено основні 

наукові результати роботи, акти впровадження результатів роботи, опис 

розробленої системи автоматичного оповіщення про появу підвищеної і 

пожежонебезпечної температури на поверхні фотоелектричного модуля сонячної 

електростанції. 

Ключові слова: кіберфізичні системи, штучні нейронні мережі, 

ансамблювання зображень, фотоелектричні модулі, моніторинг дефектів, 

пожежонебезпечний режим, безпровідна передача даних. 

 

ANNOTATION 

Lysyi A. M. Cyber-physical systems for monitoring defects in photovoltaic 

modules of solar power plants. – Qualification scientific work in the form of a manuscript. 

Dissertation for the degree of Doctor of Philosophy in the field of knowledge 12 

Information Technologies in the specialty 123 Computer Engineering. – Khmelnytskyi 

National University, Khmelnytskyi, 2026. 

Today, an urgent scientific and applied task is enhancing the fire safety of solar 

energy facility operation, which predominantly depends on the results of photovoltaic 

module monitoring, detection and elimination of their defects. Traditional monitoring 

methods do not always enable effective detection of fire-hazardous defects in 

photovoltaic modules of solar power plants. Therefore, in global practice, automated 

monitoring systems based on unmanned aerial vehicles and the Internet of Things concept 

are being increasingly implemented. 
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The dissertation provides an analysis of the current state, methods and tools for 

monitoring defects in photovoltaic modules of solar power plants. The work develops the 

architecture and method of functioning of cyber-physical systems for monitoring defects 

in photovoltaic modules of solar power plants based on the edge-cloud data processing 

concept, as well as methods for monitoring defects in photovoltaic modules of solar 

power plants that improve collection efficiency, recognition accuracy and detection of 

fire-hazardous operating modes of modules using unmanned aerial vehicles and 

supervisory control and data acquisition technology; appropriate tools have been 

developed, experiments have been established, and experimental studies have been 

conducted with the developed tools. 

The object of research is the process of monitoring defects in photovoltaic modules 

of solar power plants using software and hardware tools. 

The subject of the research is the methods and tools of cyber-physical systems for 

monitoring defects in photovoltaic modules of solar power plants using software and 

hardware tools with distributed data processing. 

The purpose of the dissertation research is to ensure prompt differentiation of 

photovoltaic module operating modes such as fire, fire hazard, and protection activation 

based on the application of cyber-physical system architecture with distributed data 

processing for monitoring defects in photovoltaic modules of solar power plants. 

The scientific novelty of the obtained results consists of the following: 

1. For the first time, an architecture of cyber-physical systems for monitoring 

defects in photovoltaic modules of solar power plants has been developed based on the 

edge-cloud data processing distribution concept. The novelty of the architecture lies in its 

formation on the principles of computation distribution between the onboard and ground 

control systems of UAV, the supervisory control system and the cloud service, which 

allows for rational data processing and storage of photovoltaic module defect monitoring 

results with low data processing latency, as well as maintaining cameras at a specified 

observation angle, automatically adjusting image color palette saturation, and 

determining photovoltaic module operating modes. 
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2. The method of data processing by software and hardware tools of the UAV 

onboard control system during monitoring of photovoltaic module defects has been 

improved, which is distinguished by the introduction of a model for determining the 

optimal camera viewing direction using Rodrigues' formula for automatic positioning and 

minimizing the influence of solar glare based on high-precision geospatial positioning 

GPS RTK; ensembling of multi-palette thermograms and RGB images has been applied; 

using image spatial resolution and the haversine formula, conversion of pixel coordinates 

of detected defects into geographic coordinates with transmission of results in 

JSON/KML data exchange format has been implemented. This allows achieving 

centimeter-level accuracy of defect positioning, reducing the volume of information 

transmitted from the onboard to the ground control system due to its onboard processing 

and transmission of only relevant images. 

3. The method of ensembling multi-palette thermograms and RGB images for 

detecting defects in photovoltaic modules has been improved, which at the first stage of 

multi-model thermogram ensembling is distinguished by the development of a 

mathematical model for classifying defects according to their relative area with respect to 

the area of a single photovoltaic cell. This forms the basis for selective filtering of 

detections separately for two-color and three-color thermograms and subsequent selective 

combination of segmentation results obtained using the YOLOv12m-seg convolutional 

neural network model, which prevents the loss of fire-hazardous defects smaller than the 

size of a photovoltaic cell. At the second stage of cross-modal data integration, post-

processing has been introduced with replacement of data in the red channel of the RGB 

image with contours of segmented defects from thermograms to create a composite 

thermo-RGB image, which ensured relevance of data transmission from the UAV to the 

ground control system with a reduction of total data processing time from one module by 

32%, and also increased the average accuracy of fire-hazardous defect detection by 2-3%. 

4. For the first time, a method of functioning of cyber-physical systems for 

monitoring defects in photovoltaic modules of solar power plants has been developed. 

The novelty of the method lies in the implementation of the edge-cloud data processing 

concept through the distribution of functions among the following components: the UAV 
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onboard control system, which ensures ensembling and transmission of relevant images 

of photovoltaic modules in the green-blue spectrum with a red outline of defects 

segmented from thermographic data; the ground control system, which performs 

determination of the defective string number of the photovoltaic module and verification 

of the validity of its operating mode based on an established set of informative features; 

the supervisory control and data acquisition system, which ensures transmission of logical 

variables of module sensor states to the ground control system; the cloud service, which 

ensures transmission and storage of images, GPS corrections and module coordinates 

through a message exchange system built on the Microsoft Azure cloud platform. This 

allows obtaining an integral indicator value of accuracy and completeness of defect 

detection of at least 90%, differentiating photovoltaic module operating modes as fire, 

fire hazard, and protection activation, which improves automation of the photovoltaic 

module monitoring process in solar power plants and increases their fire safety during 

operation. 

Validity and reliability of scientific provisions, conclusions and recommendations. 

The validity of the results is ensured by the correct application of mathematical apparatus 

for describing the control of software and hardware monitoring tools, the use of well-

known software tools and pre-trained deep learning models, conducting experiments in 

real operating conditions of photovoltaic modules of solar power plants, particularly at an 

operating solar power plant where defects were detected, including fire-hazardous ones, 

which confirmed the significant advantage of the proposed approaches over baseline 

methods. 

The practical significance of the obtained results consists of the following:  

1) the result of applying the edge-cloud data processing distribution concept in the 

architecture of cyber-physical systems for monitoring defects in photovoltaic modules of 

solar power plants has been ensuring their rational functioning, data processing and 

storage of monitoring results with low latency in real time, maintaining cameras at a 

specified observation angle, automatic adjustment of image color palette saturation, 

predicting hazards and scenarios of their development, and decision-making regarding 

response when a fire-hazardous operating mode occurs; 
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2) the application of the YOLOv12m-seg convolutional neural network model 

based on the anchor-free architectural principle with integration of image processing 

methods and algorithms allows obtaining an integral indicator value of accuracy and 

completeness of defect detection according to the F1-score metric of more than 90%, 

which indicates sufficiently high indicators of automatic recognition quality, with an 

advantage in the accuracy of locating real defects; 

3) based on the application of the method of ensembling multi-palette thermograms 

and RGB images for detecting defects in photovoltaic modules using the YOLOv12m-

seg convolutional neural network model, the value of the average precision indicator for 

detecting defects in photovoltaic modules of solar power plants has been increased by 2-

3%; 

4) an algorithm for applying cyber-physical systems for monitoring photovoltaic 

modules of solar power plants has been developed for detecting fire-hazardous operating 

modes and establishing the cause based on a set of features using UAVs and supervisory 

control and data acquisition systems; 

5) an automatic notification system has been developed for the occurrence of 

elevated and fire-hazardous temperature on the surface of a photovoltaic module of a solar 

power plant with generation of corresponding logical variables for differentiating 

photovoltaic module operating modes as fire, fire hazard, and protection activation. 

The theoretical and practical results of the research have been implemented: at 

"Drone UA" company LLC "Robotics Distribution" in the development of a project for a 

comprehensive system for monitoring the technical condition of solar power plants 

(implementation certificate dated 27.11.2025); at LLC "Nolt technologies" in the 

development of a web application for monitoring the technical condition of solar power 

plant panels using artificial intelligence, machine learning and Internet of Things 

technologies (implementation certificate dated 26.11.2025); in the educational process of 

Khmelnytskyi National University in teaching disciplines at the Department of Computer 

Engineering and Information Systems for specialty 126 Information Systems and 

Technologies, 123 Computer Engineering (implementation certificate dated 25.11.2025); 

at the state organization UANIPIO when submitting application u202504589 for a utility 
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model (letter dated 25.09.2025 № 16918/ЗУ/25). 

The introduction presents the justification of the relevance of the scientific task 

regarding the development of methods and tools for monitoring defects in photovoltaic 

modules of solar power plants using software and hardware tools of unmanned aerial 

vehicles and supervisory control and data acquisition systems. Also, the connection of 

the research topic with the directions of scientific research of well-known researchers of 

this problem in the world is presented, and the main scientific results of the work and its 

practical significance are reflected. 

In the first chapter, an analysis of the research subject area has been carried out, 

an analysis of the current state of monitoring defects in photovoltaic modules of solar 

power plants and their main types has been made, and an analysis of tools and modern 

methods for monitoring defects in photovoltaic modules of solar power plants has been 

conducted. The research problem has been formulated, and conclusions from the obtained 

results have been drawn. 

In the second chapter, the development of the architecture of cyber-physical 

systems for monitoring defects in photovoltaic modules of solar power plants based on 

the edge-cloud data processing concept is presented. A study of the computational 

environment of the cyber-physical system architecture for monitoring defects in 

photovoltaic modules of solar power plants has been conducted, software and hardware 

tools of the architecture based on a convolutional neural network onboard the UAV have 

been substantiated, and conclusions from the obtained results have been drawn. 

In the third chapter, the improved method of data processing by software and 

hardware tools of the UAV onboard control system during monitoring of photovoltaic 

module defects is presented, the improved method of ensembling multi-palette 

thermograms and RGB images for detecting defects in photovoltaic modules using the 

YOLOv12m-seg convolutional neural network model, the developed method of 

functioning of cyber-physical systems for monitoring defects in photovoltaic modules of 

solar power plants, and conclusions from the obtained results have been drawn. 

In the fourth chapter, an experimental study of the effectiveness of different 

versions of YOLO models for the task of monitoring defects in photovoltaic modules of 
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solar power plants is presented, the technical characteristics and capabilities of cyber-

physical defect monitoring systems have been evaluated. The results of experimental 

studies of detecting defects in photovoltaic modules of solar power plants are presented, 

the results of selecting technological parameters of software and hardware tools of 

unmanned aerial vehicles in real-time mode, the results of assessing the impact of 

illumination and cloudiness on the effectiveness of defect monitoring, and conclusions 

from the obtained results have been drawn. 

In the conclusions, the obtained scientific and practical results of the research are 

presented. In the appendices, scientific publications are presented in which the main 

scientific results of the work are reflected, implementation certificates of the work results, 

a description of the developed automatic notification system for the occurrence of 

elevated and fire-hazardous temperature on the surface of a photovoltaic module of a solar 

power plant. 

Keywords: cyber-physical systems, artificial neural networks, image ensemble, 

photovoltaic modules, defect monitoring, fire hazard mode, wireless data transmission. 
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ПЕРЕЛІК УМОВНИХ СКОРОЧЕНЬ 

 
БПЛА – безпілотний літальний апарат 

ДНФ – диз’юнктивна нормальна форма 

ЗНМ – згорткова нейронна мережа — англомовний еквівалент CNN 
(Convolutional Neural Network) 

КФС – кіберфізичні системи 

ФЕМСЕ – фотоелектричні модулі сонячних електростанцій 

SCADA – Supervisory Control And Data Acquisition — англомовний 
еквівалент системи диспетчерського управління та збору даних 

IoU – Intersection over Union — міра перекриття предикованої та 
істинної рамок 

IoT – Internet of Things — Інтернет речей (фізичні пристрої з 
сенсорами, що пов’язані через інтернет) 

IR – InfraRed — інфрачервоний спектр 

mAP – mean Average Precision — середня точність детекції 

RGB – Red–Green–Blue — кольорове зображення видимого спектра 

TN – True Negative — істинно негативні випадки 

TP – True Positive — істинно позитивні випадки 

YOLO – You Only Look Once — сімейство моделей детекції об’єктів 

GPS – Global Positioning System — глобальна система позиціонування 

RTK – Real Time Kinematic — кінематика в реальному часі 

JSON / KML – формат текстового/візуального відображення даних 
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ВСТУП 

 

Актуальність роботи. Сонячна енергетика належить до найбільш 

перспективних напрямів джерел енергії, що динамічно розвиваються у всьому 

світі. Варіація розмірів і масштабів площ сонячних електростанцій з 

фотоелектричними модулями досить різноманітна від десятків метрів до десятків 

кілометрів квадратних. Незважаючи на таке різноманіття можна відзначити, що 

ефективність та пожежна безпека експлуатування об’єктів сонячної енергетики 

будь-якого масштабу переважно залежать від своєчасного виявлення та усунення 

дефектів. Традиційні методи моніторингу не завжди дають змогу ефективно 

виявляти пожежонебезпечні дефекти фотоелектричних модулів сонячних 

електростанцій (ФЕМСЕ). Тому у світовій практиці дедалі активніше 

впроваджуються автоматизовані системи моніторингу на базі безпілотних 

літальних апаратів (БПЛА), концепції Інтернету речей IoT, систем диспетчерського 

управління.  

Використання БПЛА, які оснащені відео й тепловізійними камерами, 

відкриває можливість швидко, безпечно обстежувати ФЕМСЕ та отримувати 

детальні зображення у видимому та інфрачервоному діапазонах. Проте 

ефективність такої системи залежить від швидкості оброблення та аналізу даних, 

від методів здатних автоматично виявляти та класифікувати дефекти особливо 

таких, які за розмірами менше одного фотоелемента панелі, визначати ступінь 

їхньої пожежонебезпечності і, за потреби, генерувати рекомендації щодо 

технічного обслуговування і ремонту.  

При обробці наземним сервером зображень час може складати десятки 

секунд на їх передачу і обробку з одного лише модуля залежно від умов 

розповсюдження радіосигналу. Автоматичне виявлення невеликих дефектів 

потребує збільшення насиченості термограм, результатом чого є збільшення 

кількості хибних дефектів, що потребує додаткової зйомки зі зміною напрямку 

візування тепловізійної камери. Окрім зазначеного, застосування БПЛА не 

забезпечує неперервний, щоденний моніторинг. Тому є потреба у пошуку 
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ефективних програмно-апаратних засобів оброблення даних на борту БПЛА, 

доповнення їх даними системи диспетчерського управління і на цій основі 

формування кіберфізичних систем (КФС) моніторингу ФЕМСЕ. 

Використанню БПЛА для вирішення різноманітних завдань розпізнавання 

образів, застосування штучного інтелекту для оцінки дефектів об’єктів присвячені 

роботи іноземних та українських вчених. Зокрема застосуванню згорткових 

нейронних мереж з обробкою даних в різних галузях господарювання присвячені 

роботи учених Савенка О. [54; 55], Свистуна С. [53–55; 122], Мисюка Р. [120], 

Мельниченка О. [54–56; 118], Рака Т. [60; 61] та інших учених. Застосування 

згорткових нейронних мереж з обробкою даних зображень ФЕМСЕ досліджували 

учені Akram M.[2], Ali M. [3], Dey N [16], Hong Y. [32], Joshua S. [40], Sridharan N. 

[91] та інші учені. Дослідженням застосування БПЛА для виявлення дефектів 

ФЕМСЕ займалися учені Alsafasfeh M. [4], Higuchi Y. [31], Kim D. [43], Michail A. 

[68], Vergura S. [102; 103] та інші учені. Висвітлення проблем пожежної безпеки 

ФЕМСЕ здійснювали учені Buerhop-Lutz A. [7], Fang P. [21], Huang L. [35], Ong M. 

N. [75], Taralunga S., [97] Wu Z. [107] та інші учені. Дослідженню архітектур 

кіберфізичних систем присвячені роботи учених Huang C. [34], Пітуха І. [121], 

Чесановського І. [123; 124], Шологона О. [125] та інших учених. 

У цих роботах не повною мірою розглянуто питання обробки зображень 

безпосередньо бортовим комп’ютером з видачою релевантних зображень. 

Потребує також і дослідження питання моніторингу пожежонебезпечного режиму 

функціонування модулів із застосуванням систем диспетчерського управління та 

формування архітектури кіберфізичних систем моніторингу з розподілом обробки 

даних. 

Отже, виявлено протиріччя між зростаючою потребою в оперативному та 

достовірному виявленні дефектів ФЕМСЕ за допомогою БПЛА, систем 

диспетчерського управління та недостатнім розвитком програмно-апаратних 

засобів, які одночасно охоплювали б адаптивне управління камерами БПЛА, злиття 

зображень, поглиблене нейромережеве розпізнавання та оцінку дефектів щодо 

пожежної безпеки із забезпеченням обробки даних хмарним середовищем, 
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засобами БПЛА і наземною системою диспетчерського управління і збору даних.  

Це зумовлює потребу у підвищенні ефективності моніторингу ФЕМСЕ, 

зменшенні ризиків виникнення пожеж, що є актуальною науково-прикладною 

задачею. Одним із шляхів розв’язання цієї задачі є розроблення та впровадження 

кіберфізичних систем моніторингу ФЕМСЕ. 

Необхідність усунення виявленого протиріччя обумовлює актуальність 

роботи і дає змогу сформулювати наукову задачу – розробка методів і засобів 

моніторингу дефектів фотоелектричних модулів сонячних електростанцій з 

використанням програмно-апаратних засобів БПЛА і системи диспетчерського 

управління і на цій основі формування архітектури кіберфізичних систем з 

розподіленою обробкою даних моніторингу. 

Зазначене наукове завдання відповідає предметній області Стандарту вищої 

освіти України зі спеціальності 123 Комп’ютерна інженерія для третього (освітньо-

наукового) рівня вищої освіти, зокрема, таким об’єктам вивчення та діяльності як: 

кіберфізичні системи, Інтернет речей, системи та засоби оброблення даних, 

штучний інтелект, методи та способи подання, отримання, зберігання і 

передавання даних, архітектура та організація їх функціонування, інтерфейси та 

протоколи взаємодії їх компонентів, методи та технології людино-машинної 

взаємодії. 

Зв’язок роботи з науковими програмами, планами, темами. 

Дисертаційна робота виконувалася в межах науково-дослідної тематики 

Хмельницького національного університету за держбюджетною науково-дослідною 

темою «Інтелектуальна система розпізнавання дефектів об’єктів зеленої енергетики 

із використанням БПЛА» ГУ 57-2024 (№ держреєстрації 0124U004665, фінансується 

коштом зовнішнього інструменту допомоги Європейського Союзу для виконання 

зобов’язань України у Рамковій програмі Європейського Союзу з наукових 

досліджень та інновацій «Горизонт 2020»), в якій автор дисертації є виконавцем. 

Мета і завдання дослідження. 

Об’єкт дослідження – процес моніторингу дефектів фотоелектричних 

модулів сонячних електростанцій з використанням програмно-апаратних засобів.  
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Предмет дослідження – методи й засоби кіберфізичних систем моніторингу 

дефектів фотоелектричних модулів сонячних електростанцій з використанням 

програмно-апаратних засобів з розподіленою обробкою даних. 

Метою дослідження є забезпечення оперативного розрізнення режимів 

роботи фотоелектричних модулів як пожежа, пожежна небезпека, спрацювання 

захисту на основі застосування архітектури кіберфізичних систем з розподіленою 

обробкою даних моніторингу дефектів фотоелектричних модулів сонячних 

електростанцій. 

Задачі дослідження сформовані в роботі в такий спосіб: 

1. Провести аналіз сучасного стану досліджень щодо моніторингу дефектів 

фотоелектричних модулів сонячних електростанцій. 

2. Розробити архітектуру кіберфізичних систем моніторингу дефектів 

фотоелектричних модулів сонячних електростанцій на основі концепції 

периферійно-хмарного розподілу обробки даних. 

3. Удосконалити метод обробки даних програмно-апаратними засобами 

бортової системи управління БПЛА при моніторингу дефектів фотоелектричних 

модулів. 

4. Удосконалити метод ансамблювання різнопалітрових термограм та RGB 

зображень для виявлення дефектів фотоелектричних модулів. 

5. Розробити метод функціонування кіберфізичних систем моніторингу 

дефектів фотоелектричних модулів сонячних електростанцій. 

6. Провести експериментальні дослідження розробленої архітектури 

кіберфізичних систем моніторингу дефектів фотоелектричних модулів сонячних 

електростанцій. 

Методи дослідження. Для розв’язання поставлених завдань у дисертації 

використано: методи комп’ютерного зору та оброблення зображень (фільтрація, 

сегментація, реєстрація та злиття зображень видимого спектра та інфрачервоних 

зображень); алгоритми глибокого навчання, зокрема згорткові нейронні мережі для 

виявлення та класифікації дефектів; методи алгебри логіки для складання функції 

тривоги виявлення пожежонебезпечного режиму функціонування 
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фотоелектричних модулів; статистичні методи для аналізу результатів 

експериментальних досліджень, оцінки точності виявлення дефектів. 

Наукова новизна одержаних результатів полягає в наступному: 

1. Уперше розроблено архітектуру кіберфізичних систем моніторингу 

дефектів фотоелектричних модулів сонячних електростанцій на основі концепції 

периферійно-хмарного розподілу обробки даних. Новизною архітектури є 

формування її на принципах розподілу обчислень між бортовою і наземною 

системами управління БПЛА, системою диспетчерського управління і хмарним 

сервісом, що дозволяє здійснювати раціональне опрацювання даних та збереження 

результатів моніторингу дефектів фотоелектричних модулів із забезпеченням 

низької затримки обробки даних, а також утримувати камери за заданим кутом 

спостереження, автоматично налаштовувати насиченість колірної палітри 

зображення, визначати режими роботи фотоелектричних модулів.  

2. Удосконалено метод обробки даних програмно-апаратними засобами 

бортової системи управління БПЛА при моніторингу дефектів фотоелектричних 

модулів, що відрізняється уведенням моделі визначення оптимального напрямку 

візування камер з використанням формули Родрігеса для автоматичного 

позиціонування та мінімізації впливу сонячних відблисків на основі високоточного 

геопросторового позиціонування GPS RTK, застосовано ансамблювання 

різнопалітрових термограм та RGB зображень, з використанням просторової 

роздільної здатності зображення та формули гаверсинуса реалізовано 

перетворення піксельних координат виявлених дефектів у географічні координати 

з передачею результатів у форматі обміну даними JSON/KML. Це дозволяє досягти 

сантиметрової точності позиціонування дефектів, зменшити обсяг переданої з 

бортової до наземної системи управління інформації завдяки обробці її на борту та 

передачі лише релевантних зображень. 

3. Удосконалено метод ансамблювання різнопалітрових термограм та RGB 

зображень для виявлення дефектів фотоелектричних модулів, який на першому 

етапі мультимодельного ансамблювання термограм відрізняється розробкою 

математичної моделі класифікації дефектів за їх відносною площею щодо площі 
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одного фотоелемента. Це покладено в основу селективної фільтрації детекцій 

окремо для двоколірних і триколірних термограм та подальшого селективного 

комбінування результатів сегментації, отриманих за допомогою моделі згорткової 

нейронної мережі YOLOv12m-seg, що запобігає втраті пожежонебезпечних 

дефектів менших за розмір фотоелемента. На другому етапі крос-модальної 

інтеграції даних уведено постобробку із заміною даних у червоному каналі RGB 

зображення на контури сегментованих дефектів термограм для створення 

композиційного термо-RGB зображення, що забезпечило релевантність передачі 

даних з БПЛА на наземну систему управління зі скороченням загального часу 

обробки даних з одного модуля на 32 %, а також підвищено середню точність 

виявлення пожежонебезпечних дефектів на 2-3 %. 

4. Уперше розроблено метод функціонування кіберфізичних систем 

моніторингу дефектів фотоелектричних модулів сонячних електростанцій. 

Новизна методу полягає у реалізації концепції периферійно-хмарної обробки даних 

шляхом розподілу функцій між такими складовими: бортовою системою 

управління БПЛА, яка забезпечує ансамблювання та передавання релевантних 

зображень фотоелектричних модулів у зелено-синьому спектрі з червоною лінією 

обрису дефектів, сегментованих за термографічними даними; наземною системою 

управління, що виконує визначення номера дефектного рядка фотоелектричного 

модуля та перевірку істинності режиму його роботи на основі встановленої 

сукупності інформативних ознак; системою диспетчерського управління та збору 

даних, яка забезпечує передавання логічних змінних стану датчиків модулів на 

наземну систему управління; хмарним сервісом, який забезпечує передавання та 

збереження зображень, GPS-поправок і координат модулів через систему обміну 

повідомленнями, побудовану на хмарній платформі Microsoft Azure. Це дозволяє 

отримати значення інтегрального показника точності та повноти виявлення 

дефектів не менше 90 %, розрізнити режими роботи фотоелектричних модулів як 

пожежа, пожежна небезпека, спрацювання захисту, що покращує автоматизацію 

процесу моніторингу фотоелектричних модулів сонячних електростанцій та 

підвищує їх пожежну безпеку експлуатування. 
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Обґрунтованість і достовірність наукових положень, висновків і 

рекомендацій. Обґрунтованість результатів забезпечується коректним 

застосуванням математичного апарату для опису управління програмно-

апаратними засобами моніторингу, використанням відомих програмних 

інструментів та попередньо навчених моделей глибокого навчання, проведенням 

експериментів у реальних умовах експлуатації фотоелектричних модулів сонячних 

електростанцій, зокрема на діючій сонячній електростанції, де було виявлено 

дефекти, у тому числі пожежонебезпечні, що підтвердило перевагу 

запропонованих підходів над базовими методами. 

Практичне значення отриманих результатів полягає у наступному:  

1) результатом застосування концепції периферійно-хмарного розподілу 

обробки даних в архітектурі кіберфізичних систем моніторингу дефектів 

фотоелектричних модулів сонячних електростанцій стало забезпечення 

раціонального їх функціонування, опрацювання даних і збереження результатів 

моніторингу із забезпеченням низької затримки у реальному часі, утримання камер 

з заданим кутом спостереження, автоматичного налаштування насиченості 

колірної палітри зображення, прогнозування небезпек і сценаріїв їх розвитку та 

прийняття рішення щодо реагування при виникненні пожежонебезпечного режиму 

функціонування; 

2) застосування моделі згорткової нейронної мережі YOLOv12m-seg за 

архітектурним принципом anchor-free з комплексуванням методів і алгоритмів 

обробки зображень дозволяє отримати значення інтегрального показника точності 

та повноти виявлення дефектів за метрикою F1-score більше 90 %, що свідчить про 

достатньо високі показники якості автоматичного розпізнавання, з перевагою в 

точності знаходження реальних дефектів; 

3) на основі застосування методу ансамблювання різнопалітрових термограм 

та RGB зображень для виявлення дефектів фотоелектричних модулів з 

використанням моделі згорткової нейронної мережі YOLOv12m-seg підвищено 

значення показника середньої точності детекції дефектів фотоелектричних модулів 

сонячних електростанцій на 2-3 %; 
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4) розроблено алгоритм застосування кіберфізичних систем моніторингу 

фотоелектричних модулів сонячних електростанцій для виявлення 

пожежонебезпечного режиму роботи та встановлення причини за сукупністю ознак 

з використанням БПЛА та системи  диспетчерського управління і збору даних; 

5) розроблено систему автоматичного оповіщення про появу підвищеної і 

пожежонебезпечної температури на поверхні фотоелектричного модуля сонячної 

електростанції з виробленням відповідних логічних змінних для розрізнення 

режимів роботи фотоелектричних модулів як пожежа, пожежна небезпека, 

спрацювання захисту. 

Теоретичні та практичні результати дослідження впроваджені: в компанії 

«Drone UA» ТОВ «Роботікс Дістрібьюшн» при розробці проєкту комплексної 

системи моніторингу технічного стану сонячних електростанцій (акт 

впровадження від 27.11.2025); у ТОВ «Nolt technologies» при розробці веб-додатку 

контролю технічного стану панелей сонячних електростанцій із 

застосуванням технологій штучного інтелекту, машинного навчання та інтернету 

речей (акт впровадження від 26.11.2025); в освітньому процесі Хмельницького 

національного університету при викладанні дисциплін на кафедрі комп’ютерної 

інженерії та інформаційних систем для спеціальності 126 Інформаційні системи та 

технології, 123 Комп’ютерна інженерія (акт впровадження від 25.11.2025); у 

державній організації «УКРНОІВІ» при поданні заявки u202504589 на корисну 

модель (лист від 25.09.2025 № 16918/ЗУ/25); у науковій діяльності Національної 

академії Державної прикордонної служби України при розробці НДР «Методика 

опрацювання розрахунків з утримання прикордонної інфраструктури на ділянках 

державного кордону», шифр 0124U004798 (акт впровадження від 30.12.2025). 

Акти про впровадження результатів дисертаційної роботи наведено у 

додатку Б. 

Особистий внесок здобувача. Усі наукові результати дисертаційної 

роботи, які подані до захисту, отримані автором особисто. Список опублікованих 

праць за темою дисертації наведено в списку використаних джерел [52–58; 112–

117]. У роботах, які опубліковані у співавторстві, автору належать основні ідеї, 
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теоретична та практична розробка положень, що відображені в характеристиці 

наукової новизни отриманих результатів, а саме: [52] – описано обрис 

кіберфізичних систем моніторингу фотоелектричних панелей; [53] – A. Lysyi 

сформулював постановку задачі дослідження, визначив архітектуру системи 

оцінювання критичності дефектів, узагальнив результати експериментальних 

досліджень та підготував матеріали статті; [54] – розроблено експериментальне 

віртуальне середовище та підготовлено сценарії випробувань; [55] – обґрунтовано 

параметри моделі YOLO для корекції траєкторії польоту БПЛА; [56] – розроблено 

модель функціонування кіберфізичних систем моніторингу дефектів 

фотоелектричних модулів із застосуванням системи диспетчерського управління; 

[57] –розроблено математичну модель машинного навчання, здійснено валідацію 

результатів і аналіз отриманих даних; [58] – впроваджено готове рішення у 

віртуальне випробувальне середовище та підготовлено сценарії випробувань; [112] 

– обґрунтовано вибір згорткової нейронної мережі YOLO для моніторингу 

дефектів; [113] – виокремлено проблемні питання технології застосування 

термографії для моніторингу ФЕМСЕ; [114] – досліджено вплив природних умов 

на застосування візуальних приладів спостереження; [115] – розроблено модель 

виявлення пожежонебезпечного режиму роботи фотоелектричних модулів; [116] – 

проведено аналіз програмно-апаратних засобів управління БПЛА; [117] – 

розроблено алгоритм функціонування КФС моніторингу дефектів ФЕМСЕ. 

У роботах, які опубліковані у співавторстві, співавторам належать такі 

результати: [52] – M. Fedula виконав аналіз моделей сенсорного забезпечення і 

оптимізаційних алгоритмів управління сонячним трекером; A. Slyva брав участь у 

програмній реалізації моделі кіберфізичної системи та побудові імітаційного 

середовища; L. Koretska здійснила аналіз сучасних підходів до інтеграції 

фотоелектричних систем; O. Savenko виконував наукове консультування, 

коригування методології дослідження та участь у підготовці матеріалів публікації; 

[53] – S. Svystun розробив підхід до оцінювання критичності дефектів на основі 

даних БПЛА та виконав формалізацію критеріїв класифікації дефектів; O. 

Melnychenko здійснив побудову алгоритмів обробки візуальних даних та адаптацію 
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методів аналізу зображень для умов аерозйомки; P. Radiuk виконав програмну 

реалізацію окремих модулів системи аналізу та забезпечив інтеграцію алгоритмів 

у програмне середовище; A. Sachenko здійснював наукове консультування, 

коригування методології дослідження та експертну оцінку отриманих результатів; 

[54] – О. Мельниченко удосконалив практичний алгоритм планування маршрутів 

БПЛА, забезпечив його програмну реалізацію; П. Радюк створив і налаштував 

серверну інфраструктуру для потокової передачі зображень, визначив структуру 

метаданих і виконав інтеграційні тести; О. Савенко здійснив наукове керівництво 

мережевою частиною, добрав і налаштував мережеві протоколи, забезпечивши 

їхню стійкість до втрат пакетів; С. Свистун створив базові програмні модулі та 

довів зниження мережевих затримок за обчислювальними експериментами; [55] – 

S. Svystun розробив підхід до динамічної адаптації траєкторії польоту БПЛА; O. 

Melnychenko розробив алгоритм аналізу просторового розташування об’єктів 

моніторингу і визначення оптимальних позицій огляду; P. Radiuk виконав 

програмну реалізацію алгоритмів побудови адаптивних траєкторій польоту; A. 

Sachenko здійснив аналіз експериментальних результатів і оцінювання 

ефективності запропонованого підходу; O. Savenko виконував наукове 

консультування та коригування методології дослідження; [56] – O. Savenko 

здійснював коригування методології дослідження та участь у формуванні 

висновків; P. Radiuk виконав програмну реалізацію окремих модулів обробки 

даних і інтеграцію алгоритмів аналізу в програмне середовище; M. Lysyi розробив 

сценарії моделювання результатів імітаційних експериментів; O. Melnychenko 

здійснив розроблення алгоритмів аналізу візуальних і тепловізійних даних; O. 

Ishchuk розробив архітектуру збору даних від сенсорів та інтеграції з системою 

SCADA; A. Sachenko виконав аналіз отриманих результатів, оцінювання 

ефективності запропонованого підходу; [57] – A. Sachenko брав участь у 

формуванні методології, підготовці первинного варіанту рукопису й рецензуванні 

та редагуванні статті; O. Melnychenko брав участь у концептуалізації дослідження 

та рецензуванні й редагуванні статті; D. Zahorodnia здійснила розроблення 

архітектури системи та брала участь у редагуванні статті; P. Radiuk здійснив 



 
 

31 
 
програмну інженерію й редагування статті; M. Lysyi здійснив аналіз отриманих 

результатів та брав участь у рецензуванні статті; [58] – О. Мельниченко інтегрував 

у розроблену автором КФС модуль синхронізації теплових і видимих кадрів; П. 

Радюк сформував розмічений набір даних для навчання моделей; О. Савенко 

налаштував ансамбль нейромережевих моделей для автоматичного виявлення 

дефектів; А. Саченко провів статистичну валідацію отриманих автором 

результатів; С. Свистун розробив метод злиття видимих та теплових знімків, 

підготовив ансамбль нейромережевих моделей; [112] – М. Лисий обгрунтував 

порядок формування набору даних для навчання нейронних мереж; [113] – В. 

Кіретову належить аналіз фізичних принципів формування термографічних 

зображень фотоелектричних модулів; [114] – М. Лисий розробив математичну 

модель визначення візуальної дальності та виконав основні розрахунки; А. 

Башинський опрацював вплив метеорологічних чинників на видимість і визначив 

параметри середовища для моделі; В. Купельський проаналізував технічні 

характеристики засобів спостереження та умови виявлення БПЛА, підготував 

вихідні дані для розрахунків; В. Кіретов здійснив перевірку коректності 

розрахунків на прикладах і виконав зіставлення з практичними спостереженнями; 

[115] – Б. Савенко здійснив експертну перевірку коректності інтерпретації режимів, 

а також редагування та узгодження результатів для публікації; [116] – В. 

Купельський виконав аналіз апаратних засобів навігації БПЛА та сформував 

технічні вимоги; [117] – М. Лисий запропонував удосконалення методу 

функціонування КФС моніторингу дефектів та розробив основні етапи алгоритму; 

С. Партика виконав програмну реалізацію та налаштування окремих модулів 

взаємодії з інформаційними підсистемами і підготував приклади застосування; І. 

Кушнер здійснив експериментальну перевірку й аналіз результатів. 

Апробація результатів дисертації. Апробацію основних положень, ідей, 

висновків дисертаційної роботи проведено на науковому семінарі кафедри 

комп’ютерної інженерії та інформаційних систем у Хмельницькому національному 

університеті. Наукові результати роботи доповідалися на таких конференціях: 1st 

International Workshop on Advanced Applied Information Technologies (Khmelnytskyi, 
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Ukraine – Zilina, Slovakia, 5 December 2024); 6th International Workshop on Intelligent 

Information Technologies & Systems of Information Security (Khmelnytskyi, Ukraine, 

April 04, 2025); 13th IEEE International Conference on Intelligent Data Acquisition and 

Advanced Computing Systems (Silesian University of Technology, Gliwice, Poland, 4-6 

September 2025); 14th International Conference on Dependable Systems, Services and 

Technologies (DESSERT), Athens, Greece, 2024; ІІ Міжнародна науково-практична 

конференція «Актуальні проблеми діяльності складових сектору безпеки і оборони 

України в умовах особливих правових режимів: поточний стан та шляхи 

вирішення» (м. Харків, 20 березня 2025 р.). 

Публікації. Основні результати дисертації опубліковані у 6 наукових 

працях ([56; 57; 58; 113; 115; 117] та додаток А), з яких 3 статті опубліковані у 

періодичних виданнях, що індексуються в наукометричній базі Scopus [56; 57; 58] 

(видання 3-го квартилю); 3 статті у фахових наукових виданнях України [113; 115; 

117], що включені на дату опублікування до переліку наукових фахових видань 

України категорії Б; 6 робіт в матеріалах міжнародних та всеукраїнських 

конференцій [52; 53; 54; 55; 112; 116], які засвідчують апробацію матеріалів 

дисертації, поміж яких 4 роботи індексовані в наукометричній базі Scopus [52; 53; 

54; 55]. Одна стаття додатково висвітлює наукові результати роботи [114]. 

Структура та обсяг дисертації. Дисертаційна робота складається з 

анотації, змісту, переліку умовних скорочень, вступу, чотирьох розділів, висновку, 

списку використаних джерел та трьох додатків. Повний обсяг роботи містить 192 

сторінки друкованого тексту, з них анотація – на 15 с., зміст – на 3 с., перелік 

умовних скорочень – на 1 с., основний текст – на 133 с., список із 125 використаних 

джерел – на 19 с., додатки – на 16 с. Дисертація містить 33 рисунки та 21 таблицю. 
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РОЗДІЛ 1. 

 АНАЛІЗ СУЧАСНОГО СТАНУ, МЕТОДІВ І ЗАСОБІВ МОНІТОРИНГУ 

ДЕФЕКТІВ ФОТОЕЛЕКТРИЧНИХ МОДУЛІВ СОНЯЧНИХ ЕЛЕКТРОСТАНЦІЙ 

 

 

1.1. Сучасний стан моніторингу дефектів фотоелектричних модулів 

сонячних електростанцій 
 

Автоматизація процесу є важливим кроком підвищення ефективності 

моніторингу ФЕМСЕ [24; 68; 82]. Традиційні методи вимагають значних витрат 

часу та ресурсів, а також участі кваліфікованих спеціалістів [2; 6; 24; 74; 84; 102]. 

У цьому контексті використання БПЛА у поєднанні з технологіями глибокого 

навчання є перспективним напрямком створення автоматизованих систем [1; 6; 30; 

41; 68], рис. 1.1.  

 
Рисунок 1.1 – Автоматизована система моніторингу із застосуванням БПЛА 

 

Однією з перших та найбільш значущих проблем при створенні систем на 

основі глибокого навчання є якість даних та анотація [6; 13; 26]. Для успішної 

роботи моделей глибокого навчання необхідно зібрати великі обсяги даних, які 

мають бути правильно анотовані. Однак збір та анотація таких даних є значними 

труднощами [2; 16; 64].  
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Дані, отримані за допомогою БПЛА, можуть відрізнятися за якістю залежно 

від умов зйомки, таких як освітленість, кут, висота польоту та якість камери [4; 5; 

8; 37; 46; 102]. Ця різноманітність може призвести до зниження точності 

класифікації на 15-20 %, що створює необхідність стандартизації даних та розробки 

моделей, стійких до таких змін [99; 102]. 

 Науковим завданням також є вибір архітектури нейронних мереж [18; 38; 49; 

95]. На етапі розробки моделі необхідно знайти баланс між складністю мережі та її 

здатністю до узагальнення даних [39; 95]. Однак неправильний вибір архітектури 

може призвести до значного зниження точності моделі, що потребує ретельного 

налаштування та експериментів. Крім того, розробка автоматизованих систем 

діагностики потребує вирішення задачі інтеграції даних з різних сенсорів [22; 27; 

53]. БПЛА можуть бути оснащені різними типами сенсорів, включаючи RGB, 

тепловізійні камери, лазерний далекомір, що дозволяє збільшити точність 

діагностики на 10-15 %, але також збільшує обчислювальне навантаження системи 

на 20-30 % [24; 46; 69]. Інтеграція даних із різних сенсорів вимагає розробки 

складних алгоритмів та збільшення обчислювальних потужностей, що є 

додатковим викликом [22; 27; 34; 96]. Незважаючи на перелічені вище проблеми, 

розробка автоматизованих систем діагностики на основі БПЛА та глибокого 

навчання має низку суттєвих перспектив для реалізації КФС моніторингу ФЕМСЕ 

[92; 93].  

По-перше, ці системи дозволяють збільшити швидкість діагностики [6; 74]. 

Використання БПЛА у поєднанні з алгоритмами глибокого навчання скорочує час 

на діагностику, що дозволяє оперативно реагувати на проблеми, що виникають на 

ФЕМСЕ, вчасно виявляти пожежонебезпечні дефекти [7; 35; 97; 107]. 

По-друге, впровадження таких технологій сприяє зниженню витрат. 

Автоматизовані системи діагностики можуть знизити витрати на моніторинг, 

оскільки зменшується необхідність у ручній перевірці та участі фахівців з 

обслуговування сонячних електростанцій [12; 24; 36; 69; 74]. Це особливо важливо 

для невеликих електростанцій, які працюють в умовах обмежених ресурсів, і 

робить ці технології більш доступними [68; 69]. 
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 По-третє, використання БПЛА для моніторингу дозволяє підвищити 

точність прогнозів [74; 102]. Регулярний збір даних про стан ФЕМСЕ у динаміці 

збільшує точність прогнозування розвитку дефектів, особливо через забруднення, 

на 25-30 % порівняно з традиційними методами, що сприяє своєчасному вжиттю 

заходів, наприклад для упередження виникнення пожеж в спекотні дні слід 

щоденно перевіряти чистоту панелей.  

Зазначене вказує на доцільність моніторингу ФЕМСЕ з метою зменшення 

ризику виникнення пожеж, що є актуальною науково‑прикладною задачею. 

Застосування БПЛА не вирішує проблеми своєчасного виявлення дефектів, що 

актуально при виникненні пожежонебезпечного режиму роботи ФЕМСЕ. Це 

потребує об’єднання даних сенсорів БПЛА і наземного комплексу сигналізації, 

який може застосовуватись як для охорони, так і для контролю пожежного стану в 

реальному часі. Розробка архітектури кіберфізичних систем моніторингу ФЕМСЕ 

є перспективним напрямком розв’язання цієї задачі. 

Таким чином, незважаючи на існуючі проблеми, такі як забезпечення якості 

та різноманітності даних, вибір оптимальних архітектур нейронних мереж та 

інтеграція сенсорної інформації, перспективи використання автоматизованих 

систем на основі БПЛА та глибокого навчання має значні переваги. Збільшення 

швидкості діагностики, зниження витрат, підвищення точності прогнозів та 

можливість масштабування роблять ці технології важливим інструментом у 

формуванні КФС моніторингу ФЕМСЕ. 

 

1.2. Аналіз основних видів дефектів фотоелектричних модулів сонячних 

електростанцій  

 

Фотоелектричні модулі складають основу сонячних електростанцій, де вони 

об’єднуються у групи, зазвичай, які називають стрингами. Кожен модуль 

складається з 36, 48, 54, 60, 72 або 96 фотоелектричних комірок (елементів), які 

з’єднані послідовно в рядки, що забезпечує необхідну вихідну напругу, рис. 1.2 

[109; 113].  
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Рисунок 1.2 – Будова фотоелектричного модуля 

 

Для зменшення впливу пошкоджених або затінених, забруднених комірок 

зазвичай застосовують байпасні діоди, які підключаються паралельно до всієї 

панелі або до з’єднань з 15-24 елементів і шунтують цілий рядок фотоелектричних 

комірок при перевищенні певної кількості несправних, затінених комірок, зазвичай 

3-5, рис. 1.3 [109]. 

 

 
Рисунок 1.3 – Підключення байпасних (шунтуючих) діодів до 

фотоелектричного модуля 

 

У переважній більшості ФЕМСЕ застосовують 3 байпасні діоди і відповідно 

структурно можна розглядати формування 3 рядків елементів, рис. 1.3. У разі 

втрати працездатності множини комірок одного рядка активується один діод, 

третина фотоелементів та їхня потужність буде шунтуватися, а це означає 
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зменшення потужності стрингу панелей. При цьому забезпечується працездатність 

решти рядків і панелей, запобігання перегріву частини дефектних комірок і як 

наслідку можливого займання.  

Номінальну потужність ФЕМСЕ, виміряну у ватах (Вт), визначають згідно зі 

стандартними умовами тестування, тобто за температури елемента 25 °C та 

інтенсивності радіації сонячного спектра 1000 Вт/м2. Однак на практиці 

температура робочого елемента ФЕМСЕ зазвичай піднімається значно вище 25 °C, 

що залежить від температури навколишнього повітря, швидкості вітру, часу доби 

та інтенсивності радіації, а також від конструктивних особливостей модуля. Під 

час сонячної погоди внутрішня температура фотоелементів у складі ФЕМСЕ може 

бути на 20–40 °C вища за температуру навколишнього повітря, що призводить до 

зниження загальної потужності приблизно на 8–17 % [67; 109].  

Номінальну потужність вказують також при номінальній робочій 

температурі комірки Т [67; 109]. Використовуючи ці дані виробника, а також 

поточну температуру повітря 𝑇𝑐 (°C) та інтенсивність радіації 𝐺 (Вт/м2), можна 

оцінити робочу температуру модуля за допомогою наближеної формули: 

𝑇ФМ  =  𝑇𝑐  + (𝑁𝑂𝐶𝑇 − 𝑇с)
𝐺
𝐺0

 =  𝑇𝑐  + 
𝑁𝑂𝐶𝑇 −  20

800 𝐺. 

Наприклад, типовий модуль з 𝑇 = 48 °C за 𝑇𝑐 = 26 °C, 𝐺 = 900 Вт/м2 буде мати 

оціночну температуру 57 °C. Температура підвищується вище рівня 

навколишнього середовища зі збільшенням сонячної радіації для всіх типів 

модулів. Проте при затіненні однієї або декількох комірок, наприклад через опале 

листя, пташиний послід, точкове механічне пошкодження спрацювання байпасних 

діодів нестабільне або взагалі не вмикається через несуттєве зменшення напруги 

рядка фотоелектричних комірок, рис. 1.4 [113].  
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Рисунок 1.4 – Термограма і відеозображення фотоелектричних елементів, які 

пошкоджені або забруднені пташиним послідом 

 

Такий випадок найнебезпечніший у пожежному відношенні, температура  

поверхні модуля на ділянці непрацездатної комірки дефекту «гарячої точки» 

підвищується більше 100 °C [7; 9; 90], а з тильної сторони є втричі більшою, що 

безумовно може призвести до пожежі модуля, рис. 1.5.  

 

    
Рисунок 1.5 – Вигорання декількох ФЕМСЕ  

 

Крім дефекту «гаряча точка» виникають і інші дефекти. Наприклад, може 

бути відключеним або несправним весь фотоелектричний модуль, рис. 1.6 [113].  
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Рисунок 1.6 – Термограма різних колірних палітр і відеозображення двох 

фотоелектричних модулів з дефектами  

 

Також, наприклад, через внутрішні пошкодження здебільшого може бути 

один рядок, що зашунтований байпасним діодом, тепліший за інші рядки в модулі, 

при цьому на відеозображенні дефект може не проявлятися, рис. 1.7 [113]. 

          
Рисунок 1.7 – Термограма і відеозображення одного рядка фотоелектричного 

модуля з дефектом 

 

Для класифікації дефектів достатньо широко застосовують штучний 

інтелект, нейронні мережі [44; 45], проте додаткова деталізація видів дефектів дещо 

ускладнює узагальнення причин можливої появи пожежонебезпечного режиму 

роботи ФЕМСЕ. Тому було поставлено і вирішено завдання: виокремити основні 

види моделей термографічних зображень дефектів ФЕМСЕ і пов’язати їх з 

пожежонебезпечним режимом роботи. 

Узагальнений результат аналізу дефектів подамо у вигляді моделей 

термографічних зображень дефектів ФЕМСЕ, що спостерігаються при дослідженні 

на відкритому повітрі. Опис, можливі режими відмов та їх вплив на електричну 

потужність подано у таблиці 1.1, яку було складено з доопрацюванням даних [87].  
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Таблиця 1.1 – Основні види моделей термографічних зображень дефектів 

ФЕМСЕ 
Номер 
класу 
моделі 

Клас  
моделі  

дефекту 

Характерис- 
тика дефекту 

Причина 
виникнення 

дефекту 

Наслідки впливу 
дефекту 

Фото 
дефекту 

1  
 

 
 
 

Один рядок 
тепліший за 
інші рядки в 

модулі 
 

Коротке 
замикання 
байпасного 

діода 
 

 
Втрачена 

потужність 
рядка 

фотоелектричного 
модуля 

 

 
 
 

2 

 
 
 
 

 
Один або 
декілька 
модулів 

тепліші за 
інші 

 

   Модулі не 
підключені до 

системи 
 
 

Втрачена 
потужність 

електростанції 
 
 

 
 

3/1 

 
 
 
 

Поодинокі 
фотоелектрич
ні елементи 

тепліші 
 
 

Байпасні 
діоди не 
замкнуті, 
пошкодже

ння 
декількох 
елементів 
у різних 
рядках 
модуля 

Втрачена 
потужність 

модуля, 
пожежонебезпека 

 
 
 

 
 
 
 
 

3/2 

 

Частина 
поодиноких 

фотоелектрич
них елементів 

тепліша 
 
 

Байпасні 
діоди не 
замкнуті, 
дефекти 
частини 

декількох 
елементів 
у різних 
рядках 
модуля 

Потужність 
модуля не 

втрачається, 
пожежонебезпека 

 
 
 

 
 
 
 

 

Зібрані дані були поділені на 3 основних моделі дефектів. Причому 3 модель 

представлена у двох видах 3/1, 3/2, що є найбільш пожежонебезпечними при 

мінімальних втратах потужності. Наслідком зазначеного висновку є те, що такі 

дефекти (3-й вид моделі) практично ніяк не проявляються при вимірюванні 

електричних параметрів генерації електроенергії, а значить для виявлення 

пожежонебезпечного режиму потрібно розробляти нові методи моніторингу. 
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Також можливо комплексні дефекти, коли є і один, два рядки і поруч гарячі 

точки, але щодо пожежної небезпеки саме наявність гарячих точок є визначальною. 

Слід зазначити, що байпасні діоди у відкритому стані при шунтуванні 

дефектних комірок або модулів обов’язково нагріваються до температури більшої 

за 60 °C, що є прямою ознакою наявності дефектів у ФЕМСЕ. 

Здебільшого час для ретельного огляду кожного ФЕМСЕ для виявлення 

дефектів обмежений погодно-кліматичними умовами, а при застосуванні БПЛА ще 

й часом польоту. Це збільшує ризик помилок щодо виявлення дефектів.  

 

1.3. Аналіз засобів моніторингу дефектів фотоелектричних модулів сонячних 

електростанцій 

 

Візуальний моніторинг дефектів ФЕМСЕ може бути реалізований шляхом 

застосування широкого спектру оптико-електронних систем спостереження, що 

функціонують у різноманітних діапазонах електромагнітного випромінювання. До 

таких систем належать камери спостереження, що працюють у діапазонах 

видимого спектру з отриманням кольорової палітри RGB, мультиспектральні та 

гіперспектральні сенсорні системи, тепловізійні камери, флуоресцентні детектори, 

а також лазерні системи діагностики [110; 118]. Кожен з цих типів оптико-

електронних систем характеризується специфічними технічними 

характеристиками та призначений для виявлення певних типів дефектів 

фотоелектричних модулів. 

Класифікація оптичних сенсорних систем камер здійснюється за принципом 

детектування електромагнітного випромінювання у різних спектральних 

діапазонах. RGB-сенсори, що функціонують у спектральному діапазоні 400-700 нм 

видимого світла, забезпечують отримання зображень у природних кольорах та 

дозволяють виявляти поверхневі дефекти та забруднення фотоелектричних 

модулів. Мультиспектральні сенсорні системи, що працюють у розширеному 

спектральному діапазоні 400-1000 нм, охоплюють видимий та ближній 

інфрачервоний спектральні діапазони, що забезпечує більш детальний аналіз стану 
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поверхні модулів [67; 98]. Теплові сенсорні системи здійснюють вимірювання 

інфрачервоного випромінювання у діапазоні 4000-15000 нм, що дозволяє виявляти 

температурні аномалії та внутрішні дефекти фотоелектричних структур. Саме 

тепловізійна діагностика набула найширшого застосування у сфері моніторингу 

фотоелектричних модулів завдяки її здатності виявляти дефекти, що можуть 

призвести до пожежонебезпечних ситуацій. 

Безпілотні літальні апарати забезпечують достатню просторову роздільну 

здатність для комплексного аналізу великих масивів ФЕМСЕ, дозволяючи охопити 

значні площі сонячних електростанцій за короткий проміжок часу. При цьому 

ручні сенсорні пристрої дозволяють здійснювати детальне обстеження конкретних 

фотоелектричних модулів з високою роздільною здатністю та точністю 

діагностики. Однак оптичні сенсорні системи генерують значні обсяги 

багатовимірних даних, які потребують ретельного аналітичного опрацювання з 

використанням сучасних методів штучного інтелекту, зокрема алгоритмів 

глибокого навчання та комп'ютерного зору, для забезпечення точного та надійного 

моніторингу дефектів [6; 68; 104]. Процес обробки таких даних вимагає значних 

обчислювальних ресурсів та спеціалізованого програмного забезпечення. 

Однією з проблем сучасної діагностики сонячних панелей є значна 

складність ідентифікації пожежонебезпечних дефектів у залежності від мінливих 

природно-кліматичних факторів, таких як температура навколишнього 

середовища, вологість повітря, інтенсивність сонячного випромінювання та 

атмосферні умови. Превентивна діагностика та систематичний моніторинг 

функціонального стану фотоелектричних модулів є важливими завданнями для 

попередження пожежних ситуацій на електростанціях та забезпечення безпечної 

експлуатації енергетичного обладнання. Водночас не менш значущим аспектом є 

попередження та мінімізація зниження продуктивності електростанцій внаслідок 

несвоєчасного виявлення дефектів. Комплексне вирішення зазначеної 

багатоаспектної проблематики моніторингу ФЕМСЕ може бути реалізовано 

шляхом створення інноваційних кіберфізичних систем моніторингу ФЕМСЕ на 
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базі БПЛА із забезпеченням повністю автоматизованого виявлення та класифікації 

дефектів. 

Технологічні аспекти такого інноваційного рішення включають комплексну 

аналітичну обробку мультимодальних даних, адаптивну модифікацію алгоритмів 

обробки інформації залежно від умов експлуатації, мінімізацію участі 

обслуговуючого персоналу у процесі діагностики та застосування передових 

технологій штучного інтелекту для підвищення точності та надійності діагностики. 

Додатково система повинна забезпечувати інтеграцію мультимодальних сенсорних 

систем різних типів та високоточну геопросторову прив'язку для створення 

детальних картографічних моделей об'єктів з відповідною локалізацією виявлених 

дефектів [50]. Така інтеграція дозволяє створювати комплексну базу даних про стан 

електростанції та забезпечує можливість прогнозування розвитку дефектів у часі. 

Унікальні можливості оптимізації процесів збору, обробки та аналізу 

експериментальних даних за мінімальний часовий інтервал роблять сучасні 

системи дистанційного зондування надзвичайно перспективним та ефективним 

інструментарієм для розвитку галузі сонячної енергетики. Інтенсивний розвиток 

технологій дистанційного зондування безпосередньо пов'язаний із революційними 

досягненнями у сфері сучасної робототехніки та інноваційних сенсорних 

технологій, особливо з появою та масовим впровадженням безпілотних літальних 

апаратів різних типів та конфігурацій. 

Безпілотні літальні апарати вертолітного типу набули широкої популярності 

у практичних застосуваннях сонячної енергетики завдяки винятковій операційній 

гнучкості, здатності до стабільного зависання над об'єктами дослідження та 

виконання прецизійних польотів на низьких висотах, що забезпечує 

високоефективне виявлення навіть незначних ознак дефектів ФЕМСЕ. У сучасній 

практиці моніторингу ФЕМСЕ найчастіше застосовуються квадрокоптери та 

гексакоптери, кожен з яких має свої специфічні переваги та обмеження. 

Гексакоптери характеризуються підвищеною вантажопідйомністю та здатністю 

підняття важких мультиспектральних камерних систем та додаткового обладнання, 

проте мають істотно підвищене енергоспоживання та обмежену тривалість 



 
 

44 
 
польоту. Загалом перевага надається БПЛА через оптимальне співвідношення 

технічних характеристик, енергоефективності та економічної доцільності, 

особливо залежно від площі, конфігурації та топографічних особливостей 

території, яку займає сонячна електростанція [28; 68]. 

Корисне навантаження БПЛА, що включає різноманітні камерні системи та 

додаткове діагностичне обладнання, відіграє абсолютно визначальну роль у 

успішному виконанні складних завдань щодо виявлення, ідентифікації та 

класифікації дефектів сонячних панелей. Сучасні БПЛА оснащуються 

різноманітними типами спеціалізованих камер залежно від специфіки поставлених 

діагностичних завдань, проте найчастіше використовуються комбінації RGB та 

тепловізійних камерних систем. RGB-камери високої роздільної здатності 

застосовуються переважно як допоміжні діагностичні системи і найефективніше 

виявляють поверхневі дефекти, механічні пошкодження та різні типи забруднення 

модулів [53; 70; 85]. 

Тепловізійні камери, що характеризуються високою чутливістю до 

інфрачервоного спектрального діапазону, використовуються для прецизійного 

моніторингу внутрішніх дефектів, пов'язаних з електричними та термічними 

пошкодженнями структури ФЕМСЕ, включаючи мікротріщини, деградацію p-n 

переходів та порушення електричних контактів [23; 41; 42; 74; 99; 100]. При 

використанні тепловізійної діагностики необхідно враховувати множину факторів, 

що впливають на точність вимірювань, включаючи просторову роздільну здатність 

камери, поточні природно-кліматичні умови, температуру навколишнього 

середовища, швидкість та напрямок вітру, а також оптимальну висоту польоту 

БПЛА [7; 71; 107]. 

Інтелектуальне поєднання зображень різних спектральних діапазонів являє 

собою високоефективний та перспективний метод комплексного виявлення 

дефектів, що у майбутньому потребуватиме детального наукового розгляду 

складного процесу ансамблювання та синхронізації відеозображень у видимому 

спектрі та тепловізійних даних для створення єдиної інформативної картини стану 

фотоелектричних модулів [58; 81; 104]. Такий мультимодальний підхід дозволяє 
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значно підвищити точність діагностики та зменшити кількість помилкових 

спрацювань системи моніторингу. 

У контексті практичного застосування БПЛА для автоматизованого 

моніторингу ФЕМСЕ квадрокоптер DJI Matrice 300 RTK являє собою технологічно 

передовий та перспективний зразок сучасної авіаційної техніки, технічні 

можливості та переваги якого будуть детально обґрунтовані у подальших розділах 

наукового дослідження.  

Цей БПЛА забезпечує надійну підтримку встановлення потужного 

обчислювального модуля, такого як Nvidia Jetson AGX Orin 32GB з підвищеною 

обчислювальною продуктивністю, та відповідного спеціалізованого програмного 

забезпечення нейронної мережі YOLO для реалізації алгоритмів об'єктного 

детектування в реальному часі. 

Додатково DJI Matrice 300 RTK має інтегровані високоточні тепловізійну і 

RGB-камери професійного рівня, прецизійний лазерний далекомір з можливістю 

програмного керування кутом огляду та автоматичного наведення, зокрема 

універсальну систему DJI Zenmuse H20T, що поєднує RGB-камеру високої 

роздільної здатності. Крім того, DJI Matrice 300 RTK забезпечує високоточне RTK-

позиціонування з сантиметровою точністю та стабільний автономний політ за 

попередньо запрограмованими маршрутами з можливістю автоматичного 

повернення до базової станції. 

Ця комплексна функціональність загалом дозволяє здійснювати повністю 

автоматизоване виявлення та попередню класифікацію дефектів ФЕМСЕ 

безпосередньо на борту БПЛА з використанням бортових обчислювальних 

ресурсів, тоді як остаточне оцінювання значущості виявлених дефектів, а також 

прийняття стратегічних рішень щодо забезпечення пожежної безпеки ФЕМСЕ 

реалізується на потужній наземній апаратурі обробки даних із широким 

застосуванням ресурсів хмарного обчислювального середовища та розподілених 

систем обробки інформації [29; 34; 94]. 

Зазначені інноваційні технологічні підходи можуть бути надзвичайно 

ефективно застосовані для комплексної розробки сучасних кіберфізичних систем 
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моніторингу ФЕМСЕ на базі БПЛА з активним використанням передових 

алгоритмів глибокого машинного навчання та нейронних мереж різних архітектур.  

Для значного подальшого підвищення точності, надійності та швидкості 

діагностики сонячних панелей надзвичайно доцільною та перспективною є глибока 

інтеграція багатовимірних даних камерних систем спостереження з адаптивними 

алгоритмами машинного навчання, що базуються на сучасних технологіях 

комп'ютерного зору, обробки природної мови та штучного інтелекту широкого 

спектру застосування. 
 

1.4. Аналіз методів моніторингу дефектів фотоелектричних модулів 

сонячних електростанцій 

 

Автоматизація процесу виявлення дефектів виходить на новий рівень завдяки 

поєднанню зібраних БПЛА даних з інструментами штучного інтелекту, зокрема 

машинного і глибокого навчання. Сучасні вимоги полягають не лише в бінарній 

класифікації, а й у точній локалізації дефекта (bounding box або маска сегментації), 

визначенні його розмірів, характеристик. Саме це стало можливим завдяки ЗНМ. 

Узагальнена модель класичної задачі визначення наявності дефекту може бути 

формалізована в такий спосіб [125]: 
𝑃 =  𝑀𝐿(𝜙(𝐼)) 

де 𝐼 – вхідне зображення, 𝜙 – функція витягу ознак (наприклад, HOG), а 𝑀𝐿 

– машинний алгоритм, 𝑃 – прогнозований клас («дефект/не-дефект»). 

Моделі ЗНМ отримують класифікаційні ознаки об’єктів моніторингу, при 

цьому важливо здійснювати обчислення в реальному часі [78; 79], що реалізується 

найбільш ефективно моделями YOLO (You Only Look Once). Особливістю  

згорткової мережі є однопрохідність, можливість окреслювати контури дефектів. 

На рис. 1.8 схематично зображено принцип виявлення об’єктів ЗНМ YOLO [125]. 
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Рисунок 1.8 – Виявлення об’єктів моделлю ЗНМ YOLO  

 

Модель Faster R-CNN [86-89] реалізує двоетапні підходи, на першому етапі 

генерується набір регіон-пропозицій, а на другому проводиться класифікація та 

локалізація. Перевага у кращих результатах при сегментації складних форм дефектів, 

зазначене компенсується швидкістю обробки, що може бути суттєвим при 

застосуванні БПЛА, при аналізі відео [71; 90; 91].  

Поєднання декількох моделей ЗНМ, тобто ансамблювання підвищує точність 

детектування дефектів, причому моделі можуть бути і однієї ЗНМ, які розв’язують 

одну й ту ж задачу, але, наприклад, оцінюються зображення з різною колірною 

палітрою одного і того ж об’єкту. Ідея полягає в тому, що архітектура, наприклад 

YOLO, швидко виявляє контури об’єкта при застосуванні палітри «гарячий 

чорний», тоді як безпосередньо дефекти краще в палітрі «гарячий червоний». 

 Виходи ансамбльованих ЗНМ зменшують пропуски (FN) і кількість 

хибнопозитивних спрацювань (FP). Ансамблювання є найбільш ефективним, коли 

розміри, форми дефектів різні [96-99]. Завершується обробка (ensemble) 

агрегуванням контурів сегментованих дефектів. Це відповідає також поєднанню 

RGB та IR зображень, що підвищує ефективність виявлення дефектів.  

Узагальнений принцип ансамблювання формально описується так [125]: 

 𝑝𝑒(𝐷) =  𝛤(𝑝1(𝐷), 𝑝2(𝐷), … , 𝑝𝑁(𝐷))    (1.1) 

де 𝑝𝑖(𝐷) – ймовірність (або ступінь упевненості) виявлення дефекту 𝐷 i-ою 
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моделлю; 𝛤 – функція ансамблювання (середнє арифметичне, зважене середнє, 

максимум чи інші методи). 

Якщо 𝑝𝑒(𝐷) більше порогового значення, то дефект вважається виявленим. 

Експерименти свідчать [96; 97], що правильно підібрана функція 𝛤 дає змогу 

істотно знижувати кількість помилок проти найкращої окремої моделі. 

Особливо помітний ефект ансамблювання в ситуаціях нестаціонарних 

зображень, коли на частині панелі відблиски, на іншій тінь і в тіні є забруднення. 

Окрема модель може не зафіксувати дефект у тіньовій зоні, тоді як інша подає 

сигнал; у поєднанні моделей імовірність пропуску дефекту зменшується [16; 47; 

64]. Разом з тим передача зображень на віддалений сервер потребує ресурсів, що 

зумовлює необхідність обробки даних безпосередньо на борту безпілотного 

літального апарата із застосуванням універсальних ансамблевих алгоритмів 

глибокого навчання для мультиспектрального аналізу. 

Поєднання технологій динамічного збору візуальних даних із сенсорів та 

методів глибокого навчання формує основу кіберфізичних систем, що повинна: 

опрацьовувати дані з RGB та ІЧ-камер, а також потенційно з lidar-сканерів; 

комплексно аналізувати зображення з урахуванням різних спектральних 

діапазонів; застосовувати моделі ЗНМ YOLO для виявлення та локалізації 

дефектів; підвищувати надійність за рахунок ансамблю моделей; передавати 

результати на наземний пункт управління для прийняття рішень щодо усунення 

дефектів. 

Важливою вимогою виявлення дефектів ФЕМСЕ є отримання точних 

контурів дефектів з метою встановлення приналежності до відповідного рядка 

фотоелектричних елементів, яких зазвичай 3 шт. і кожний рядок у якісних панелей 

захищений від перегріву байпасним діодом.  

Тому однією з вимог до вибору моделі ЗНМ є реалізація точної сегментації 

об’єктів. Порівняльний аналіз версій ЗНМ YOLO для термографічної сегментації 

подано у табл. 1.2.  
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Таблиця 1.2 – Порівняльний аналіз версій ЗНМ YOLO для термографічної 

сегментації 
Характеристика Версія моделі 

YOLOv9 YOLOv10 YOLOv11 YOLOv12 
Середня точність визначення 

об’єктів mAP@50  
0.65-0.71 0.70-0.76 0.74-0.86 0.78–0.88 

Кількість кадрів, які модель 
здатна обробляти за секунду 

FPS, кадрів за секунду 

50-70 60-85 70-150 65–140 

Стабільність сегментації задовільна добра відмінна відмінна 
 

Найкращими є моделі YOLOv12 для виявлення дефектів ФЕМСЕ і 

здійснення сегментації. Зробимо аналіз версій моделей YOLOv12-seg для 

отримання точних обрисів дефектів при застосуванні комп’ютера-помічника 

Nvidia Jetson AGX Orin 32GB на борту БПЛА, табл. 1.3. 

Таблиця 1.3 – Порівняльний аналіз версій моделей YOLOv12-seg для 

отримання точних обрисів дефектів 
Версія моделі Розмір, 

Mb 
Кількість кадрів, 
які модель здатна 

обробляти за 
секунду FPS 

кадрів за секунду 

Середня 
точність 

визначення 
об’єктів 

mAP@50 

Мінімальний розмір 
дефекту/застосування 

YOLOv12n-seg 7 130–160 0.742 ≥6×6 см / швидкий 
моніторинг низької точності 

YOLOv12s-seg 23 95–120 0.857 ≥4×4 см / оптимальний 
режим спостереження 

YOLOv12m-seg 48 55–75 0.874 ≥3×3 см / баланс точності й 
швидкодії 

YOLOv12l-seg 86 30–45 0.869 ≥3×3 см / повільний політ, 
детальний аналіз 

YOLOv12x-seg 124 20–30 0.885 ≥2×2 см / максимальна 
точність термографії 

 

Вимозі реалізації максимальної точності сегментації при прийнятній 

швидкості обробки кадрів, точності виявлення дефектів та розміру програми 

відповідає версія моделі YOLOv12m-seg, яку застосовано у подальшому 

дослідженні. 
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1.5. Постановка задачі дослідження 

 

На підставі виконаного аналітичного огляду сучасного рівня розвитку методів 

і засобів моніторингу дефектів фотоелектричних модулів сонячних електростанцій 

здійснено систематизацію наявних моделей дефектів та їхніх термографічних 

відображень. У результаті дослідження виявлено низку суперечностей, зокрема між 

зростаючою потребою в оперативному та достовірному виявленні дефектів ФЕМСЕ 

за допомогою БПЛА і недостатнім рівнем розвитку інтегрованих технічних рішень, 

здатних комплексно поєднувати адаптивне управління оптико-електронними 

камерами БПЛА, мультиспектральне злиття зображень, застосування 

нейромережевих алгоритмів розпізнавання та проведення кількісної оцінки 

виявлених дефектів у контексті забезпечення пожежної безпеки об’єктів. 

Встановлені обмеження та розбіжності призводять до зниження загальної 

ефективності системи моніторингу ФЕМСЕ, що, у свою чергу, підвищує ймовірність 

виникнення аварійних ситуацій та пожеж, створюючи додаткові ризики для 

експлуатації сонячних електростанцій. Такий стан справ обумовлює актуальність 

розв’язання науково-прикладної задачі підвищення ефективності та безпеки 

моніторингу. Одним із перспективних напрямів її вирішення є розроблення та 

впровадження КФС моніторингу ФЕМСЕ, яка забезпечуватиме інтеграцію 

зазначених функцій у єдиному технологічному комплексі з можливістю 

масштабування та адаптації до різних умов експлуатації. 

Необхідність усунення виявленого протиріччя обумовлює актуальність 

роботи і дає змогу сформулювати наукове завдання – розробка методів і засобів 

моніторингу дефектів фотоелектричних модулів сонячних електростанцій з 

використанням програмно-апаратних засобів БПЛА і системи диспетчерського 

управління і на цій основі формування архітектури кіберфізичних систем з 

розподіленою обробкою даних моніторингу [121]. 

Для розв’язання наукового завдання обрано об’єкт і предмет дослідження: 

об’єкт дослідження – процес моніторингу дефектів фотоелектричних 
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модулів сонячних електростанцій з використанням програмно-апаратних засобів;  

предмет дослідження – методи й засоби кіберфізичних систем моніторингу 

дефектів фотоелектричних модулів сонячних електростанцій з використанням 

програмно-апаратних засобів з розподіленою обробкою даних. 

Сформульовано мету дослідження – забезпечення оперативного 

розрізнення режимів роботи фотоелектричних модулів як пожежа, пожежна 

небезпека, спрацювання захисту на основі застосування архітектури кіберфізичних 

систем з розподіленою обробкою даних моніторингу дефектів фотоелектричних 

модулів сонячних електростанцій. 

Для досягнення мети необхідно вирішити часткові завдання дослідження: 

1. Провести аналіз сучасного стану досліджень щодо моніторингу дефектів 

фотоелектричних модулів сонячних електростанцій. 

2. Розробити архітектуру кіберфізичних систем моніторингу дефектів 

фотоелектричних модулів сонячних електростанцій на основі концепції 

периферійно-хмарного розподілу обробки даних. 

3. Удосконалити метод обробки даних програмно-апаратними засобами 

бортової системи управління БПЛА при моніторингу дефектів фотоелектричних 

модулів. 

4. Удосконалити метод ансамблювання різнопалітрових термограм та RGB 

зображень для виявлення дефектів фотоелектричних модулів. 

5. Розробити метод функціонування кіберфізичних систем моніторингу 

дефектів фотоелектричних модулів сонячних електростанцій. 

6. Провести експериментальні дослідження розробленої архітектури 

кіберфізичних систем моніторингу дефектів фотоелектричних модулів сонячних 

електростанцій. 

Виходячи із перелічених завдань заплановано отримання чотирьох нових 

наукових результатів. Взаємозв’язок нових наукових результатів подано на рис. 

1.9. 

Першим науковим результатом окреслюється архітектура кіберфізичних 

систем моніторингу дефектів фотоелектричних модулів сонячних електростанцій з 
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відповідним комплексом програмно-апаратних засобів, функціонування якого 

описує четвертий науковий результат. Оскільки найскладнішим елементом 

архітектури є засоби БПЛА, тому більш детально їх функціонування розкрито у 

другому науковому результаті. Визначальним у функціонуванні програмних 

засобів БПЛА є виявлення дефектів на двох термограмах і візуальному зображенні 

кожного модуля, що забезпечується їх ансамблюванням і складає суть третього 

наукового результату. 
 

 

Метод функціонування кіберфізичних систем 
моніторингу дефектів фотоелектричних 

модулів сонячних електростанцій. 

Метод обробки даних програмно-
апаратними засобами бортової системи 

управління БПЛА при моніторингу дефектів 
фотоелектричних модулів  

Метод ансамблювання 
різнопалітрових термограм та RGB 
зображень для виявлення дефектів 

фотоелектричних модулів 

4 

2 

3 

Архітектура кіберфізичних систем 
моніторингу дефектів фотоелектричних 

модулів сонячних електростанцій на основі 
концепції периферійно-хмарного розподілу 

обробки даних 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 

 
Рисунок 1.9 – Взаємозв’язок нових наукових результатів 

 

Для розв’язання поставлених завдань у дисертації використано: методи 

комп’ютерного зору та оброблення зображень (фільтрація, сегментація, реєстрація 

та злиття зображень видимого спектра та інфрачервоних зображень); алгоритми 

глибокого навчання, зокрема згорткові нейронні мережі для виявлення та 

класифікації дефектів; методи алгебри логіки для складання функції тривоги 

виявлення пожежонебезпечного режиму функціонування фотоелектричних 

модулів; статистичні методи для аналізу результатів експериментальних 
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досліджень, оцінки точності виявлення дефектів. 

 

1.6. Висновки до першого розділу 

 

Окреслено проблемні питання зниження ефективності інспектування 

ФЕМСЕ, що підвищує ризик виникнення пожеж і становить сутність актуальної 

науково-прикладної задачі. Одним із шляхів розв’язання цієї задачі є розроблення 

та впровадження КФС моніторингу ФЕМСЕ. 

Зроблено огляд моделей термографічних зображень дефектів ФЕМСЕ, їх 

опис, можливі режими відмов та їх вплив на електричну потужність, що дозволяє 

узагальнити класифікацію основних моделей дефектів ФЕМСЕ, серед яких 

найбільш пожежонебезпечні ті, при яких відсутнє спрацювання байпасних діодів 

при наявності окремих гарячих елементів або їх частини в ФЕМСЕ.  

У результаті аналізу засобів моніторингу дефектів ФЕМСЕ встановлено, що 

використання для їх моніторингу БПЛА DJI Matrice 300 RTK є перспективним. Він 

підтримує встановлення обчислювального модуля, такого як Nvidia Jetson AGX 

Orin 32GB і відповідно програмного ЗНМ YOLO та має інтегровані тепловізійну і 

RGB камери, лазерний далекомір з можливістю керування кутом огляду. 

У результаті порівняльного аналізу основних ЗНМ, що застосовуються в 

контексті розпізнавання дефектів можна відзначити перспективність їх 

застосування для виявлення дефектів ФЕМСЕ, що потребує у подальшому оцінки 

показників точності і повноти виявлення дефектів. 

Здійснено постановку задачі дослідження, де окреслено формулювання 

основних положень роботи, визначено часткові завдання дослідження. 

 

 

Основні результати розділу опубліковані у працях [58; 113]. 
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РОЗДІЛ 2.  

АРХІТЕКТУРА КІБЕРФІЗИЧНИХ СИСТЕМ МОНІТОРИНГУ ДЕФЕКТІВ 

ФОТОЕЛЕКТРИЧНИХ МОДУЛІВ СОНЯЧНИХ ЕЛЕКТРОСТАНЦІЙ 

 

 

Сучасні виклики в галузі сонячної енергетики такі, як онлайн моніторинг 

дефектів ФЕМСЕ, прогнозування пожежонебезпечного режиму функціонування 

та досвід їх подолання обумовлюють необхідність пошуку та впровадження нових 

інноваційних рішень і в першу чергу, технологічних [68; 82; 100]. Саме тому у 

розділі розглянуто розробку архітектури КФС моніторингу дефектів ФЕМСЕ на 

основі концепції периферійно-хмарної обробки даних [5; 22; 27; 34]. 

 

2.1. Дослідження обчислювального середовища для моніторингу дефектів 

фотоелектричних модулів сонячних електростанцій 

 

Основу обчислювального середовища складають програмно-апаратні засоби 

БПЛА. Проведемо їх порівняльний аналіз, що можуть бути використані при 

інтеграції ЗНМ YOLO у бортовий комп’ютер БПЛА та управління ним.  

Типи програмно-апаратних засобів, які використовуються в БПЛА: NVIDIA 

Xavier; Ambarella H2; Qualcomm QCS605; NVIDIA Jetson TX2, Raspberry Pi 4 Model 

B; Nvidia Jetson AGX Orin 32GB. Ці та інші програмно-апаратні засоби широко 

використовуються в галузі розробки та реалізації систем комп'ютерного зору та 

штучного інтелекту, де важливими є такі характеристики, як швидкість і точність 

обробки зображень. 

Моніторинг ФЕМСЕ потребує високоточної навігації, тепловізійної зйомки 

та автономної обробки зображень із застосуванням згорткових нейронних мереж 

безпосередньо на борту БПЛА, що забезпечує спорадичну передачу даних лише 

дефектних ФЕМСЕ і як результат мінімізується час передачі, об’єм 

оброблювальної інформації у наземному комп’ютері і хмарному середовищі [24; 

34; 41; 46; 94]. 
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Обґрунтуємо тип програмно-апаратних засобів зразка БПЛА, що відповідає 

запропонованим принципам функціонування КФС моніторингу дефектів ФЕМСЕ.  

Принципами, що відрізняють моніторинг ФЕМСЕ із застосуванням БПЛА є: 

реалізація обробки зображень бортовими програмно-апаратними засобами; 

забезпечення орієнтування відео тепловізійної камер під заданим кутом 

стосовно площини фотоелектричного модуля і положення Сонця;  

інтеграція бортових програмно-апаратних засобів зі згортковою нейронною 

мережею YOLO [17; 18; 39; 95]. 

Виходячи із зазначених принципів сформульовано загальні технічні вимоги 

до обладнання БПЛА, що впливають на вибір перспективного зразка моніторингу 

дефектів фотоелектричних модулів: 

1. Забезпечення автономного польоту за заданим маршрутом [28; 33; 73]. 

2. Наявність тепловізійної і RGB камер з можливістю керування кутом 

огляду. 

3. Забезпечення утримання фіксованого кута огляду (орієнтування) камер до 

площини панелей, з врахуванням положення Сонця із застосуванням лазерного 

далекоміра [24; 102]. 

4. Наявність встановленого бортового комп’ютера з реалізованою відкритою 

архітектурою SDK. 

5. Можливість інтеграції програмно-апаратних засобів зі ЗНМ YOLO і 

можливість оновлення її алгоритмів. 

7. Забезпечення спорадичної передачі релевантних зображень, тільки із 

виявленими дефектами. 

Для точної реалізації фіксованого кута огляду камер до площини ФЕМСЕ з 

урахуванням положення Сонця, на БПЛА мають бути інтегровані важливі системи 

і сенсори: 

інерціальна навігаційна система (IMU) — забезпечує дані про нахил, крен і 

курс БПЛА, що дозволяє стабільно утримувати кут огляду в динамічному 

середовищі; 
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модуль GPS RTK високоточної навігації (точність до сантиметрів), що 

важливо для збереження стабільної позиції в просторі відносно панелей і Сонця; 

сонячний сенсор або цифровий ефемеридний модуль, або фізичний датчик 

сонячного вектору, або програмна система, яка розраховує положення Сонця на 

основі координат, часу і дати, що дозволяє адаптувати орієнтацію камер відповідно 

до сонячного кута; 

барометр і лазерний далекомір або ультразвуковий датчик висоти для 

точного утримання висоти над поверхнею, особливо над нерівними масивами 

панелей; 

сенсор положення, орієнтування підвісу, що потрібен для контролю кута 

нахилу камери, утримання точного напрямку зйомки за рахунок зворотного зв’язку 

з підвісу; 

магнітометр (компас) для доповнення до роботи датчика орієнтування і 

стабілізації напрямку IMU. 

Сенсори GPS RTK, IMU, сонячний орієнтир забезпечують якісний 

моніторинг панелей з похибкою орієнтування менше 5°. 

Розглянемо відповідність сучасних зразків БПЛА окресленим принципам 

розробки і загальним вимогам. Порівняльна характеристика БПЛА для 

забезпечення інтелектуального автономного моніторингу дефектів ФЕМСЕ 

бортовими програмно-апаратними засобами подано у таблиці 2.1. 

Таблиця 2.1 – Порівняльна характеристика БПЛА для застосування як носія 

програмно-апаратних засобів КФС моніторингу дефектів ФЕМСЕ  
Модель БПЛА Наявність 

тепловізійної і RGB 
камер, лазерного 

далекоміру 

Відкрита 
архітектура SDK, 
інтеграція YOLO 

Вигляд 
БПЛА 

Позиці- 
онування 

DJI Matrice 300 
RTK 

Так Так  RTK 

DJI Mavic 2 
Enterprise 

Так Обмежено  GPS 

Parrot Anafi 
USA 

Ні Так 

 

GPS 
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Результат аналізу даних характеристик БПЛА вказує на вибір DJI Matrice 300 

RTK, що найкраще відповідає зазначеним принципам і вимогам. DJI Matrice 300 

RTK це професійний БПЛА із підтримкою тепловізійних камер, RTK 

позиціонуванням, SDK та можливістю інтеграції обчислювального модуля, 

наприклад, Nvidia Jetson AGX Orin 32GB. Він забезпечує точне позиціонування, 

стабільний польотний маршрут, програмоване керування камерою і сумісність із 

алгоритмами штучного інтелекту для виявлення дефектів. 

Технічні характеристики DJI Matrice 300 RTK: 

максимальний час польоту до 55 хв; 

RTK позиціонування з точністю до 1 см; 

сумісність з камерами Zenmuse H20, H20T; 

максимальна дальність передачі до 15 км; 

підтримка Mobile SDK, Onboard SDK, Payload SDK. 

DJI Matrice 300 RTK є найкращим вибором для високоточних задач 

моніторингу ФЕМСЕ. Поєднання автономного польоту, тепловізійної зйомки, 

точного RTK позиціонування та підтримки штучного інтелекту дозволяє виявляти 

дефекти панелей у реальному часі та автоматизувати процес контролю якості при 

обробці даних на борту. Порівняння програмно-апаратних засобів проводилось за 

характеристиками: швидкість обробки зображень (FPS, кадри за секунду), точність 

детекції (mAP, %), Precision (%). Результати, порівняння характеристик подані у 

таблиці 2.2, наочно демонструють різницю між бортовими та програмно-

апаратними засобами і допомагають визначити, яка з них найкраще відповідає 

потребам щодо виявлення дефектів ФЕМСЕ. 

Таблиця 2.2 – Порівняльна характеристика програмно-апаратних засобів 

БПЛА. 
Типи бортових програмно-

апаратних засобів 
FPS (%) mAP (%) Precision (%) 

Nvidia Jetson AGX Orin 32GB 
(DJI Matrice 300 RTK) 

100 95 93 

Ambarella H2 
(DJI Mavic 2 Enterprise) 

60 70 75 

Qualcomm QCS605 
(Parrot Anafi USA) 

80 85 82 
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Результати показують, що Nvidia Jetson AGX Orin 32GB демонструє 

найбільшу продуктивність і можливість застосування моделей YOLO, що робить 

цей бортовий програмно-апаратний засіб найпотужнішою серед досліджуваних. 

У той час як Ambarella H2, Qualcomm QCS605 мають значно нижчі показники 

FPS, і мають обмежені можливості в задачах, що вимагають високої швидкості 

обробки даних.  

Важливими показниками є точність детекції, яка виражена через mAP, 

Precision (%). Особливо велика різниця між Nvidia Jetson AGX Orin 32GB і 

Ambarella H2. Цей результат дозволяє зробити висновок про те, що точність детекції 

найкраща у Nvidia Jetson AGX Orin 32GB. 

Спрощену структурну схему обробки зображень бортовим комп’ютером 

БПЛА на основі YOLO подано на рис. 2.1 [55]. 
 
 

Дрон з RGB, 
тепловізійною 

камерами 
(Matrice)   

Бортовий 
комп’ютер 

Jetson Xavier NX       

YOLO (ONNX/ 
TensorRT)                    

 Виявлення 
дефектів 
панелей 

 

Вибір 
релевантних 
зображень і 
передача на 

наземну 
станцію               

 
Рисунок 2.1 – Структурна схема обробки зображень бортовим 

комп’ютером БПЛА на основі YOLO 

 

Для виконання завдань моніторингу дефектів сонячних панелей на основі 

згорткових нейронних мереж із застосуванням бортового комп’ютера Nvidia Jetson 

AGX Orin 32GB, БПЛА DJI Matrice 300 RTK є оптимальним варіантом. При цьому 

потребує вирішення завдання визначення оптимального напрямку орієнтування 

(візування) камер на сонячну панель з використанням лазерного далекоміра, що 

фактично складає основу траєкторного забезпечення підсистеми програмно-

апаратних засобів БПЛА. Незважаючи на те, що сучасні БПЛА, зокрема DJI Matrice 

300 RTK з камерою Zenmuse H20T, оснащені високоточними сенсорами, такими як 

тепловізор, лазерний далекомір та модулі позиціонування RTK, у їх програмному 

забезпеченні відсутній вбудований алгоритм автоматичного визначення кута 
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нахилу сонячної панелі та коригування напрямку візування камери відповідно до 

геометрії поверхні і положення Сонця. Виробник не надає стандартного рішення 

для забезпечення постійного перпендикулярного спрямування оптичної вісі 

спостереження камери при огляді фотоелектричної панелі під час автономного 

польоту.  

Аналогічна ситуація спостерігається й у інших промислових БПЛА, що 

використовуються для тепловізійного моніторингу. Це зумовлює необхідність 

створення алгоритму, який дозволяє здійснювати розрахунки в режимі реального 

часу та автоматично керувати положенням камери для досягнення максимального 

теплового контрасту та точності діагностики, зменшення впливу відблисків, рис. 

2.2 (фото зроблено автором на сонячній електростанції). 

   
Рисунок 2.2 – Термографія хибних дефектів через відблиски 

 

Для досягнення високої точності тепловізійного аналізу необхідно 

забезпечити правильне візування тепловізійної камери. У роботі запропоновано 

алгоритм, що використовує лазерний далекомір для визначення геометрії панелі та 

побудови правильної орієнтації камери. 

Апаратна складова засобів включає БПЛА DJI Matrice 300 RTK, камери DJI 

Zenmuse H20T (RGB, тепловізор, лазерний далекомір), обчислювальний модуль 

Nvidia Jetson AGX Orin 32GB, програмне забезпечення DJI Onboard SDK, Payload 

SDK, Python, ROS [94]. 

Для реалізації алгоритму рекомендується використовувати Python-

бібліотеки: numpy для обробки координат, векторна алгебра; math тригонометричні 
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функції, dji-sdk (через API) взаємодія з камерою, лазером, підвісом; rospy зв’язок у 

системах на базі ROS. 

Розглянуте обчислювальне середовище є основою архітектури КФС 

моніторингу дефектів ФЕМСЕ. 
  
2.2. Архітектура кіберфізичних систем моніторингу дефектів 

фотоелектричних модулів сонячних електростанцій на основі концепції 

периферійно-хмарного розподілу обробки даних 

 

Сучасне впровадження концепції автоматизованого моніторингу 

функціонального стану ФЕМСЕ характеризується розширенням сфери 

застосування передових інформаційних технологій із паралельним системним 

збільшенням різноманітності та складності технічних рішень для здійснення 

комплексного моніторингу та багаторівневої агрегації експериментальних даних. 

Зазначені еволюційні процеси розвитку технологій детермінували необхідність 

розробки інноваційних інтегрованих технологічних рішень, стратегічно 

спрямованих на кардинальну оптимізацію ефективності та надійності процесів 

моніторингу ФЕМСЕ в умовах динамічно змінюваних експлуатаційних параметрів 

та факторів навколишнього середовища. 

Вищезазначені тенденції сучасного технологічного розвитку обумовлюють 

об'єктивну потребу у формуванні принципово нової методологічної парадигми 

системного конструювання високотехнологічних програмно-апаратних комплексів 

у системах інтелектуального моніторингу дефектів ФЕМСЕ, що забезпечить 

глибоку інтеграцію сучасних високопродуктивних моніторингових засобів, 

складних аналітичних інформаційних інструментів та систем повністю 

автоматизованого управління, включаючи передові системи штучного інтелекту та 

машинного навчання, у єдиній комплексній багаторівневій системі з розподіленою 

архітектурою [118]. Практична реалізація зазначеного інноваційного підходу 

можлива виключно на основі системного застосування сучасних математичних 

моделей та обчислювальних методів теорії КФС, яка містить потужну та всебічно 
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розроблену науково-методологічну базу теоретичних знань та практичного 

досвіду, що забезпечує адекватне математичне моделювання, багатокритеріальну 

оптимізацію та ефективне управління подібними складними інтегрованими 

системами з множинними взаємозалежними компонентами [29; 34; 89]. 

Кіберфізичні системи за своєю сутністю являють собою комплексні, 

географічно розподілені системи, у яких здійснюється глибока багаторівнева 

інтеграція різноманітних інформаційних, високопродуктивних обчислювальних та 

сучасних комунікаційних засобів із складними фізичними процесами та явищами з 

основною метою забезпечення оперативної та надійної двосторонньої взаємодії 

(включаючи безперервне спостереження та активний цілеспрямований вплив) з 

динамічним фізичним середовищем та його компонентами. КФС концептуально 

базуються на принципах сучасного мережевого математичного моделювання та 

розподілених обчислень, при цьому концептуально механізм їхнього 

функціонування та організаційні принципи є структурно аналогічними 

мультиагентним системам, проте характеризується істотно підвищеною 

мобільністю та адаптивністю окремих агентів, а також системною інкорпорацією 

складних механізмів розподіленого паралельного обчислення високої 

продуктивності [124]. 

Крім того, системна імплементація внутрішньо-мережевого математичного 

моделювання та розподілених алгоритмів обробки інформації забезпечує 

кардинальне та статистично значуще підвищення якості та ефективності 

управління складною інфраструктурою розподілених систем, до структурного 

складу якої можуть органічно входити різноманітні сенсорні системи БПЛА, 

потужне хмарне обчислювальне середовище з розподіленими ресурсами, 

спеціалізовані датчики та сенсори наземних систем моніторингу, а також додаткові 

елементи інфраструктури інтернету речей [53]. Така архітектурна організація 

дозволяє створювати гнучкі та масштабовані системи, здатні адаптуватися до 

змінних умов експлуатації та динамічно перерозподіляти обчислювальні ресурси 

залежно від поточних потреб системи. 
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Науково-теоретична парадигма кіберфізичних систем представлена у 

сучасній міжнародній науковій літературі достатньо комплексно та всебічно з 

різних методологічних позицій [22; 27]. Історичними та концептуальними 

передумовами виникнення та розвитку КФС стали революційні концепції 

SmartDust (інтелектуальні бездротові мережі мініатюрних сенсорів, обчислювачів 

та виконавчих актуаторів), глобальних обчислень, що передбачають інтеграцію 

обчислювальних можливостей у всі аспекти навколишнього середовища, та 

концепція оточуючого інтелекту, яка фокусується на створенні інтелектуального 

середовища, що реагує на присутність людини. Ці концепції у своїй сукупності 

призвели до формування та широкого розповсюдження революційної концепції 

інтернету речей IoT, що забезпечило технологічну можливість глибокої інтеграції 

фізичних об'єктів різного призначення у глобальну інформаційну мережу з 

можливістю взаємодії та обміну даними [123]. 

Технологічна інтеграція принципово передбачає не лише базову можливість 

здійснення віддаленого моніторингу параметрів об'єктів чи дистанційного 

управління їхніми функціями, а також конструювання та розгортання складних 

повністю автономних систем з вбудованими алгоритмами інтелектуальної 

саморегуляції та адаптивного управління на основі аналізу поточного стану 

системи та прогнозування її розвитку. Саме підвищена автономність та 

інтелектуальність сучасних систем IoT значно виходить за традиційні межі 

класичних моделей простої односторонньої або двосторонньої взаємодії фізичних 

пристроїв та інформаційного середовища і детермінувала об'єктивний науковий 

пошук більш потужної, всеохоплюючої та методологічно обґрунтованої концепції 

– комплексної теорії кіберфізичних систем [27; 34]. 

Сучасний кіберфізичний методологічний підхід концептуально передбачає 

глибоку та органічну інтеграцію фізичних компонентів системи та інформаційних 

(цифрових, кібернетичних) елементів у єдину адаптивну багаторівневу систему 

безперервного моніторингу, інтелектуального аналізу, прогностичного 

моделювання та активного реагування на зміни стану контрольованих об'єктів [62; 

63; 65]. Теоретичні моделі та практичні обчислювальні методи КФС забезпечують 
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ефективне вирішення широкого комплексу складних технічних та методологічних 

проблем, що об'єктивно виникають при інтеграції принципово різнорідних 

інформаційних та технічних інструментів у єдину когерентну систему з 

синергетичними властивостями, зокрема при системному конструюванні 

спеціалізованих КФС моніторингу дефектів ФЕМСЕ з урахуванням специфічних 

вимог галузі сонячної енергетики [123; 124]. 

У дослідженні [6] детально запропоновано та теоретично обґрунтовано 

загальну універсальну архітектуру, що характеризує структурний склад, 

функціональні зв'язки та конфігураційні особливості кіберфізичних систем будь-

якого цільового призначення та сфери застосування. У спеціальному випадку 

безпекових систем, основною стратегічною функцією яких є безперервний 

моніторинг параметрів контрольованих об'єктів, комплексне інформаційне 

забезпечення процесів управління та повна автоматизація складних процесів 

прийняття рішень в умовах невизначеності, універсальна архітектура КФС 

включає розгалужену мережу різноманітних технічних засобів та пристроїв, що 

здійснюють активну взаємодію з фізичним середовищем і можуть 

характеризуватися принципово різноманітними апаратними інтерфейсами та 

альтернативними способами взаємодії (включаючи пасивні сенсорні системи та 

активні виконавчі елементи). 

Спеціалізованими засобами сучасної комунікаційної інфраструктури 

(включаючи стандартизовані протоколи та технології передачі даних) пристрої 

фізичного рівня системи органічно інтегруються в єдине інформаційне середовище 

КФС, де за допомогою різноманітних інструментів передових обчислювальних 

технологій вхідна інформація систематизується, піддається багаторівневій обробці 

та підлягає комплексному аналізу з використанням методів штучного інтелекту 

[123; 124]. Така організація забезпечує створення єдиного інформаційного 

простору системи з можливістю ефективного управління всіма компонентами та 

процесами. 

Перевагою такого архітектурного підходу є можливість здійснення 

інтелектуальної обробки інформації практично на всіх ієрархічних рівнях системи, 
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починаючи з базового фізичного рівня збору первинних даних, з подальшою 

можливістю масштабування та поширення обчислювальних процесів на 

використання потужних зовнішніх високопродуктивних хмарних сервісів та 

платформ, включаючи передові системи штучного інтелекту та машинного 

навчання. Таким чином, система являє собою сучасну периферійно-хмарну 

архітектуру – технологічно інтегровану та функціонально оптимізовану систему, 

яка органічно поєднує розподілені обчислення на периферії мережі (Edge 

сomputing) та потужні хмарні технології (Cloud сomputing) для забезпечення 

ефективної обробки великих обсягів даних, динамічної оптимізації використання 

доступних ресурсів та гарантованого забезпечення мінімальної затримки обробки 

інформації у режимі реального часу. 

Науково обґрунтоване формування та комплексне теоретичне обґрунтування 

інноваційної моделі моніторингу дефектів ФЕМСЕ у вигляді архітектури 

периферійно-хмарного обчислення на основі системного застосування сучасних 

методів та математичних моделей теорії КФС об'єктивно потребує чіткого 

визначення та детального аналізу всіх структурних компонентів такої складної 

багаторівневої системи з урахуванням їхніх функціональних взаємозв'язків та 

технічних характеристик.  

Варіація розмірів і масштабів площ укритих фотоелектричними модулями 

досить різноманітна від десятків метрів до десятків кілометрів. Незважаючи на таке 

різноманіття можна відзначити, що ефективність та пожежна безпека 

експлуатування об’єктів сонячної енергетики переважно залежать від своєчасного 

виявлення та усунення дефектів. Традиційні методи інспектування, не завжди 

дають змогу ефективно виявляти пожежонебезпечні дефекти ФЕМСЕ. Тому у 

світовій практиці дедалі активніше впроваджуються автоматизовані системи 

моніторингу на базі БПЛА. 

Використання БПЛА, які оснащені відео й тепловізійними камерами, 

відкриває можливість швидко, безпечно обстежувати великі площі поверхонь 

ФЕМСЕ та отримувати детальні зображення у видимому та інфрачервоному 

діапазонах. Проте ефективність такої системи залежить від швидкості оброблення 
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та аналізу даних, від методів здатних автоматично виявляти та класифікувати 

дефекти, їх пожежонебезпечності і, за потреби, генерувати рекомендації щодо 

ремонтних робіт.  

Можна відзначити зростаючу потребу в оперативному та достовірному 

виявленні дефектів ФЕМСЕ за допомогою БПЛА з одного боку і недостатнім 

розвитком відповідних інтегрованих рішень, які одночасно охоплювали б 

адаптивне управління камерами БПЛА та оцінку дефектів щодо пожежної безпеки 

із забезпеченням обробки даних бортовим комп’ютером.  

Отже, є потреба в підвищенні оперативності моніторингу ФЕМСЕ, 

зменшенні ризиків виникнення пожеж, що є актуальною науково-прикладною 

задачею на основі розробленого методу виявлення пожежонебезпечного режиму 

роботи фотоелектричних модулів сонячних електростанцій. 

Пожежонебезпечний режим роботи сонячних електростанцій є загрозою для 

безпеки як інфраструктури, так і персоналу. До такого режиму зазвичай відносять 

виникнення «гарячих точок», пошкодження ізоляції, короткі замикання, що 

можуть призводити до локального перегрівання та займання. Класичні методи 

моніторингу, як візуальні огляди та термографія, часто потребують значних 

ресурсів, особливо на великих станціях. Тому останнім часом зростає інтерес до 

застосування штучного інтелекту, систем диспетчерського управління і збору 

даних з автоматизації технологічних процесів та безпілотних літальних апаратів, 

які дозволяють проводити автоматизований і високоточний аналіз. 

У роботі [99] розглянуто вплив гарячих точок, як причини пожежі на 

сонячних електростанціях. Автори наводять аналітичний огляд основних типів 

пошкоджень, включаючи мікротріщини, локальні перегріви та деламінацію. 

Дослідження [90] фокусується на використанні термографії і алгоритмів 

глибокого навчання для виявлення гарячих точок та інших пожежонебезпечних 

аномалій на сонячних панелях у реальному часі. 

У статті [35] запропоновано інтелектуальну систему раннього виявлення 

пожеж, яка інтегрує методи комп’ютерного зору та нейромережі для ідентифікації 

перегрівів, спричинених пошкодженнями панелей. 



 
 

66 
 

У роботі [7] здійснено огляд причин пожеж на сонячних електростанціях із 

практичним аналізом випадків займання та рекомендаціями щодо попередження, 

включаючи системи моніторингу, що застосовують машинне навчання. 

Стаття [97] досліджує можливості застосування цифрового двійника у 

поєднанні зі штучним інтелектом для виявлення пожежонебезпечних станів, 

зокрема тривалого локального перегріву, що важко виявити традиційними 

методами. 

 У роботі [107] представлено широкий огляд проблеми пожежної безпеки 

фотоелектричних модулів та рішень для їх мінімізації. Авторами акцентовано, що 

локальні гарячі точки є причиною виникнення пожежі. Розглянуто новітні підходи 

до зниження цих ризиків: зокрема, структурну реорганізацію модулів, оптимальне 

розташування панелей для ослаблення ефекту гарячих точок. 

Дослідження [75] присвячене кількісному аналізу статистики пожеж на 

дахових сонячних установках методом «дерева відмов». На основі звітів про 

пожежі у чотирьох країнах автори ідентифікували сім основних подій-ініціаторів 

загоряння, серед яких електрична дуга виявилась домінуючою причиною пожеж. 

Встановлено, що найбільш значимими компонентами, з вини яких виникають 

загоряння, є комутаційні пристрої, при цьому несправності саме роз’ємних 

з’єднань спричиняли близько 17 % від усіх проаналізованих PV-пожеж. Частка 

пожеж на сонячних електростанціях через займання фотоелектричних модулів 

становить 5-8%, рис. 2.3 [75]. 

У статті [8] запропоновано IoT-платформу моніторингу стану сонячних 

панелей, що використовує алгоритми штучного інтелекту для автоматичного 

розпізнавання гарячих точок. Система аналізує температурні поля модулів і 

визначає аномальні ділянки перегріву за різних рівнів освітленості. Задля цього 

автори натренували дві AI-моделі (глибокого навчання ЗНМ та класичного 

машинного навчання) на даних з реальної PV-установки, де спеціально індукували 

гарячі точки. Платформа успішно виявляє перегріви модулів, фіксуючи характерні 

відмінності температур між нормальними і потенційно небезпечними панелями. В 

результаті система змогла в режимі реального часу ідентифікувати розвиток 
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«гарячих точок» до того, як ті спричинять займання, що підтверджує ефективність 

AI-підходу в підвищенні пожежної безпеки PV-модулів. 

 
Рисунок 2.3 – Частка пожеж на сонячних електростанціях через займання 

фотоелектричних модулів 

 

У дослідженні [21] розглянуто питання пожежної безпеки будівельних 

інтегрованих фотоелектричних систем (BIPV). Робота поєднує огляд причин 

займань у PV-модулях з аналізом ризиків саме в контексті інтеграції панелей у 

конструкції будівель. Відзначається, що для BIPV актуальні ті ж небезпечні 

режими, що й для звичайних сонячних станцій: дефекти фотоелементів (тріщини, 

деградація), зовнішні фактори (пил, затінення) та електричні несправності 

(перегріви, неузгодженість з’єднань панелей, дугові розряди, замикання тощо) 

можуть спричиняти пожежі. Для комплексної оцінки ризику автори застосували 

метод аналізу ієрархій, враховуючи сукупність факторів: характеристики PV-

системи, електрообладнання, будівельні особливості та наявність протипожежних 

засобів. На основі багатофакторного аналізу запропоновано рекомендації з 

пожежобезпечного проєктування BIPV систем. 

Наведений типовий та систематизований опис функціональних можливостей 

КФС та представлений широкий спектр практичних прикладів успішної реалізації 
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сучасних мережевих систем, що базуються на найновітніших інформаційно-

технологічних досягненнях та інноваціях у галузі кіберфізичних систем, 

забезпечують надійну методологічну основу для формування цілісного 

концептуального підходу щодо системного конструювання оптимальної моделі 

кіберфізичних систем як інформаційно-технічної основи перспективної системи 

повністю автоматизованого моніторингу дефектів ФЕМСЕ з інтегрованими 

можливостями прогнозування та попередження аварійних ситуацій. 

Для організації моніторингу ФЕМСЕ застосовуються системи 

диспетчерського управління та збору даних SCADA (Supervisory Control And Data 

Acquisition). Одним із сучасних прикладів є Schneider Electric EcoStruxure Platform 

інтегрована IoT орієнтована платформа автоматизації та управління 

енергетичними об’єктами, розроблена компанією Schneider Electric (Франція). 

SCADA є раціональним рішенням для інтеграції в КФС моніторингу ФЕМСЕ 

завдяки застосуванню IoT технології, спеціалізації на енергетичних об’єктах та 

можливості роботи з геопросторовими даними. Її застосування забезпечує 

поєднання автоматизованого виявлення дефектів за допомогою БПЛА з 

традиційними методами контролю електричних параметрів сонячної 

електростанції. 

Система побудована на принципах відкритої архітектури, підтримує хмарні 

технології та елементи штучного інтелекту, що забезпечує комплексне управління 

енергетичною інфраструктурою від рівня польових пристроїв до корпоративних 

систем. Відкритість архітектури дозволяє інтегрувати різні типи датчиків, 

актуаторів та програмних рішень. 

Запропоновано в архітектурі застосовувати БПЛА DJI Matrice 300 RTK як 

носій сенсорів для моніторингу стану сонячних електростанцій. Штатний 

польотний контролер DJI A3 Pro Flight Controller забезпечує стабілізацію, точне 

позиціонування та виконання маршрутів. Додатково на платформу доцільно 

встановити бортовий комп'ютер NVIDIA Jetson AGX Orin 32GB, який виконує 

функції обробки зображень за допомогою ЗНМ YOLO у реальному часі [94], 

рис. 2.4. 
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Рисунок 2.4 – Комп'ютер NVIDIA Jetson AGX Orin 32GB 

 

Також є можливість заміни або додаткового встановлення польотного 

модуля відкритої архітектури типу NXP RDDRONE-FMUK66 FMU (Flight 

Management Unit), що дозволить підключати додаткові сенсори за потреби; 

Бортовий комп'ютер NVIDIA Jetson AGX Orin 32GB використовується для 

обробки зображень та виконання алгоритмів машинного навчання, зокрема моделі 

згорткової нейронної мережі YOLOv12m-seg для виявлення дефектів ФЕМСЕ. Він 

забезпечує необхідні обчислювальні можливості для виконання таких завдань, як 

комп'ютерний зір, обробка даних, та інші високорівневі операції безпосередньо на 

борту. 

NVIDIA Jetson AGX Orin 32GB оснащений спеціалізованим апаратним 

забезпеченням (2048-ядерний NVIDIA Ampere GPU з підтримкою CUDA, 64 Tensor 

ядра, 12-ядерний Arm Cortex-A78AE CPU до 2.2 GHz, 32GB LPDDR5 RAM), що 

забезпечує високу продуктивність роботи алгоритмів штучного інтелекту. Цей 

комп'ютер використовується для обробки даних, отриманих від тепловізійної та 

RGB камер, лазерного далекоміра, а також для виявлення дефектів у режимі 

реального часу. 

Наземна станція управління складається з: пульта дистанційного керування 

DJI Smart сontroller для ручного керування БПЛА і перегляду зображень, ноутбука 

зі встановленим програмним забезпеченням DJI Ground Station Pro, що забезпечує 

обробку і зв'язок з БПЛА через радіомодуль DJI OcuSync Enterprise. 
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Для отримання зображень використовується камера DJI Zenmuse H20T, яка 

підключена до бортового комп'ютера NVIDIA Jetson AGX Orin 32GB. На цьому 

комп'ютері відбувається також отримання GPS-координат дефектів. Результати 

аналізу передаються у форматі JSON на наземну систему, що зв'язується з хмарним 

сервером ZeroMQ, що розгорнутий у Microsoft Azure. 

DJI Matrice 300 RTK оснащений вбудованим приймачем GPS RTK, що 

дозволяє забезпечити сантиметрову точність позиціонування. При цьому потрібні 

корекційні дані, які можуть надходити не лише від фізичної станції (DJI D-RTK 2), 

але й через хмарні сервіси у форматі NTRIP. У цьому випадку стаціонарні GPS-

станції (NTRIP Server) генерують поправки у форматі RTCM та передають їх на 

центральний хмарний сервер (NTRIP Caster). Пульт керування БПЛА (NTRIP 

Client), підключений до Інтернету через Wi-Fi ноутбука або SIM-карту, отримує ці 

поправки від Caster та передає їх у реальному часі на БПЛА. Це забезпечує 

високоточне визначення координат об’єктів моніторингу без необхідності 

використання власної фізичної базової станції.  

Таким чином, застосування хмарних RTK-сервісів дозволяє отримувати 

сантиметрову точність геолокації для завдань моніторингу та ФЕМСЕ за 

допомогою БПЛА Matrice 300 RTK. Програмний додаток на наземній станції 

забезпечує відображення результатів. Інформація зберігається на хмарному 

сервері. Функціонування КФС починається з підготовки та запуску БПЛА, 

налаштування БПЛА та обладнання. У програмному забезпеченні БПЛА готується 

польотне завдання, також налаштовуються такі параметри, як висота польоту, 

швидкість, траєкторія і кути огляду камер, що дозволяє оптимізувати процес 

зйомки для отримання зображень високої якості. Траєкторія польоту розробляється 

з урахуванням особливостей розміщення ФЕМСЕ та мети моніторингу і зазвичай 

представляється у вигляді паралельних галсів над лініями розміщення стрінгів 

ФЕМСЕ, що характерно і для інших альтернативних джерел електроживлення [55]. 

Виходячи із зазначеного архітектуру КФС моніторингу ФЕМСЕ на основі 

концепції периферійно-хмарної обробки даних представлено на рис. 2.5 [52; 117]. 
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Рисунок 2.5 – Архітектура КФС моніторингу дефектів ФЕМСЕ на основі  

концепції периферійно-хмарної обробки даних 

 

Опис архітектури кіберфізичних систем моніторингу:  

1. Фізичне середовище у вигляді ФЕМСЕ. 

2. Засоби спостереження, а саме: БПЛА DJI Matrice 300 RTK, який 

оснащений RGB камерою та тепловізійною камерою (DJI Zenmuse H20T), лазерний 

далекомір для визначення геометрії панелі та орієнтації камери. 

3. Сенсори IoT ФЕМСЕ це пристрої, розміщені на фотоелектричному 

модулі для вимірювання температури байпасних діодів, стану пожежної небезпеки. 

4. Актуатори камер спостереження це система управління кутом їх 

візування відносно площини панелей та положення Сонця для оптимізації процесу 

зйомки. 

5. Сенсори БПЛА це високоточна GPS RTK навігація для забезпечення 

точного позиціонування та орієнтації. Також це датчики температури і освітленості 

для налаштування кольорової палітри термограм. 

6. Бортова система управління БПЛА включає: 

додатковий комп'ютер Nvidia Jetson AGX Orin 32GB, який використовується для 

обробки зображень в реальному часі за допомогою моделі згорткової нейронної 

мережі YOLOv12m-seg; 

систему збору даних з камер, сенсорів БПЛА; 
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алгоритм визначення оптимального напрямку візування камер. 

7. Наземна система управління БПЛА включає: 

наземний пульт управління БПЛА для керування польотом, отримання та 

відображення даних; 

програмне забезпечення DJI Onboard SDK та Payload SDK для керуванням 

БПЛА та його корисним навантаженням;  

ноутбук управління БПЛА з інтерфейсом для оператора, що дозволяє 

планувати місії, контролювати політ та отримувати інформацію про виявлені 

дефекти і обробляти її. 

8. Система диспетчерського управління та збору даних SCADA це 

наземний комп'ютер з під’єднаною мережею датчиків і засобів передачі даних, що 

підтримує зв'язок з хмарним середовищем, з мікроконтролерами і датчиками 

фотоелектричних модулів, інверторами і забезпечує моніторинг, вчасне виявлення 

пожежі на модулях. 

Крім зазначеного також КФС, всі її елементи об’єднуються в єдине ціле 

комунікаційною інфраструктурою, яка представлена каналом зв'язку між БПЛА та 

наземною станцією управління, між актуаторами, камерами спостереження і 

системою управління БПЛА [5; 27; 89]. Також перспективною є реалізація каналу 

зв’язку між системою управління БПЛА і окремими ФЕМСЕ з метою отримання 

даних сенсорів з модулів і також ідентифікації модуля. Комунікаційна 

інфраструктура БПЛА через наземну систему управління і хмарний сервіс також 

зв’язує обчислювальне середовище БПЛА з системою диспетчерського управління 

та збору даних, пов’язує дані всіх сенсорів, забезпечує зв’язок з хмарними 

сервісами. 

Інформація щодо результатів функціонування КФС, необхідні вихідні дані 

розміщуються у сховищах даних: 

бортова пам'ять БПЛА для тимчасового зберігання зібраних зображень та 

результатів обробки;  

пам'ять наземного комп'ютера системи SCADA для зберігання отриманих 

даних та результатів аналізу; 
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хмарний сервер, на який передаються результати аналізу (включаючи GPS-

координати дефектів) для подальшого зберігання, аналізу та моніторингу стану 

панелей, а також з якого отримують дані високоточного позиціонування. 

Така архітектура КФС забезпечить: 

автоматичне виявлення та локалізація дефектів ФЕМСЕ за допомогою моделі 

згорткової нейронної мережі YOLOv12m-seg на борту БПЛА;  

класифікація виявлених дефектів, що важливо для встановлення 

пожежонебезпечного режиму ФЕМСЕ; 

визначення географічних координат дефектних модулів; 

передача інформації про виявлені дефекти на наземну систему; 

виявлення пожежонебезпечного режиму роботи ФЕМСЕ та встановлення 

причини за сукупністю ознак [111]. 

 Також інтернет з'єднання наземної станції до хмарного сервера для передачі 

даних високоточного позиціонування, даних для подальшого аналізу та зберігання 

забезпечить можливість обміну даними з іншими типами КФС, наприклад, КФС 

моніторингу сонячних електростанцій регіону, КФС моніторингу 

пожежонебезпечних режимів роботи техногенних об’єктів, КФС моніторингу 

наслідків ракетно-артилерійських, авіаційних ударів по енергетичній 

інфраструктурі. 

З позиції декомпозиції функціональних завдань, багаторівневу структуру 

архітектури КФС можна представити у ієрархічній послідовності: 

рівень агрегації даних – базовий рівень, на якому здійснюється збирання 

інформації з фізичних сенсорних пристроїв (механічних та оптичних датчиків, 

систем відеоспостереження, тепловізійних камер тощо); 

рівень аналітичної обробки даних – функціональний рівень, що 

характеризується застосуванням різноманітних математичних інструментів та 

алгоритмів фільтрації, кореляційного та аналітичного опрацювання інформації; 

рівень управління та автоматизованого реагування – на основі результатів 

аналітичної обробки даних та прогнозування потенційних ризиків і сценаріїв їх 

розвитку здійснюється процес прийняття рішень щодо реагування: оповіщення, 
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координація з іншими КФС, зокрема генерації сонячної електроенергії, контролю 

стану пожежної безпеки сонячних електростанцій; 

рівень зовнішніх ресурсів – не входить до структурної архітектури КФС, 

проте забезпечує основні аналітичні процеси за рахунок хмарних обчислень та 

застосування високопродуктивних комерційних аналітичних систем, включаючи 

системи штучного інтелекту. 

Дотримання оптимального балансу між апаратною та обчислювальною 

складовими на всіх рівнях КФС забезпечує вирішення проблематики онлайн-

моніторингу дефектів та ідентифікації пожежонебезпечних режимів 

функціонування ФЕМСЕ [7; 97; 107]. 

Застосування теоретичних моделей КФС у галузі сонячної енергетики 

забезпечить формування нової концептуальної основи для розвитку 

технологічних рішень автоматизованого моніторингу, що функціонують у режимі 

реального часу та забезпечують максимально повну та точну інформацію про стан 

ФЕМСЕ. На сучасному етапі це являє собою одну з найперспективніших 

концепцій, яка забезпечує інтеграцію різноманітних моделей КФС (зокрема 

моніторингу дефектів, моніторингу генерації електроенергії, охорони периметру 

станцій, моніторингу стану пожежної безпеки, тощо) у єдину мережеву структуру 

для підвищення оперативності функціонування та забезпечення більш глибокої та 

надійної автоматизації системи моніторингу ФЕМСЕ. Крім того, забезпечується 

відкритість системи для оперативної інтеграції додаткових сенсорних пристроїв, 

елементів інтернету речей, а також більш складних систем, таких як роботизовані 

комплекси. 

Потенційно запропонована архітектура КФС моніторингу дефектів ФЕМСЕ 

на основі концепції периферійно-хмарної обробки даних забезпечує можливість 

оперативного формування та розгортання нових сервісів, налаштування процедур 

та алгоритмів оцінювання стану ФЕМСЕ, активізації програмно-алгоритмічних 

засобів підтримки прийняття рішень та комунікації зі сховищами масивів даних 

[34; 106]. Подальшим етапом наукового дослідження є розробка моделей 

згорткових нейронних мереж для моніторингу дефектів ФЕМСЕ бортовими 
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обчислювальними комплексами [83]. 

Отже, уперше розроблено архітектуру кіберфізичних систем моніторингу 

дефектів фотоелектричних модулів сонячних електростанцій на основі концепції 

периферійно-хмарного розподілу обробки даних. Новизною архітектури є 

формування її на принципах розподілу обчислень між бортовим комп’ютером 

БПЛА, наземним комп’ютером системи диспетчерського управління та збору 

даних і хмарним сервісом. 

 

2.3. Обґрунтування програмно-апаратних засобів архітектури кіберфізичних 

систем моніторингу дефектів фотоелектричних модулів сонячних електростанцій з 

функціонуванням згорткової нейронної мережі на борту БПЛА 

 

Згідно з проведеним аналізом, оптимальним вибором для виконання завдань 

обробки зображень з використанням моделі згорткової нейронної мережі 

YOLOv12m-seg, є програмно-апаратний засіб NVIDIA. Цей засіб демонструє 

найвищу швидкість обробки зображень (FPS) та точність детекції (mAP) порівняно 

з іншими дослідженими програмно-апаратними засобами, такими як Ambarella H2 

та Qualcomm QCS6053. 

В контексті використання БПЛА для моніторингу сонячних електростанцій, 

квадрокоптер DJI Matrice 300 RTK є перспективним зразком. Він підтримує 

встановлення зовнішнього обчислювального модуля, такого як Nvidia Jetson AGX 

Orin 32GB, та має інтегровані тепловізійну і RGB камери з можливістю керування 

кутом огляду, зокрема DJI Zenmuse H20T (RGB, тепловізор, лазерний далекомір). 

DJI Matrice 300 RTK забезпечує високоточне RTK позиціонування та стабільний 

політ за заданим маршрутом. 

Для забезпечення повноцінної роботи КФС моніторингу дефектів необхідно 

налаштувати програмне забезпечення на бортових програмно-апаратних засобах. 

Базовою операційною системою може слугувати образ Linux, оновлений до Ubuntu 

20.04.5 LTS, який завантажується на Nvidia Jetson AGX Orin 32GB. Передумовою є 

встановлення необхідних бібліотек та пакетів. 
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Для доступу до камери DJI Zenmuse H20T програмно-апаратного засобу 

Nvidia Jetson AGX Orin 32GB (інтегрованого в DJI Matrice 300 RTK) 

використовуватимуться бібліотеки DJI Onboard SDK та Payload SDK10. Це офіційні 

програмні інтерфейси розробника (SDK) від компанії DJI, які дозволяють 

розширити функціональність БПЛА DJI шляхом створення власного програмного 

забезпечення або підключення додаткових модулів. Ці SDK надають API для 

керування камерою, підвісом, лазерним далекоміром та іншими функціями БПЛА 

[116].  

Багатопотоковість дозволить одночасно отримувати дані з камери 

(тепловізійної та/або RGB) та обробляти їх за допомогою інтегрованої моделі 

згорткової нейронної мережі YOLOv12m-seg, мінімізуючи затримки та 

підвищуючи ефективність розпізнавання. 

Для точного визначення положення сонячної панелі та оптимізації кута 

візування камери з метою мінімізації відблисків, використовується лазерний 

далекомір, вбудований в камеру DJI Zenmuse H20T, а також дані з високоточної 

супутникової навігаційної системи GPS RTK та інерціального вимірювального 

блоку IMU10.  

Розроблений алгоритм визначення оптимального напрямку візування 

тепловізійної камери інтегрується в програмне забезпечення БПЛА. Для реалізації 

алгоритму використовуватимуться Python-бібліотеки, такі як numpy, math, pvlib 

або pysolar, а також dji-sdk для взаємодії з камерою та іншими сенсорами. 

Для запуску допоміжного програмного забезпечення на комп'ютері наземної 

станції управління використовується Anaconda Powershell Prompt (miniconda) – 

спеціальне командне вікно PowerShell, яке постачається разом з Anaconda 

(платформою для наукових обчислень, машинного навчання та роботи з Python) з 

попередньо налаштованим віртуальним оточенням.  

Відмінністю є реалізація основного циклу обробки даних безпосередньо на 

борту БПЛА комп’ютером Nvidia Jetson AGX Orin 32GB, включаючи отримання 

зображень, їх обробку ЗНМ, виявлення дефектів та прийняття рішень щодо 

спорадичної передачі релевантних даних на наземну систему. 



 
 

77 
 

 

2.4. Висновки до другого розділу  

 

Використання бортового програмно-апаратного засобу (бортового 

комп’ютера) Nvidia Jetson AGX Orin 32GB у поєднанні з БПЛА DJI Matrice 300 RTK 

та камерою DJI Zenmuse H20T дозволяє створити більш ефективну систему 

автономного моніторингу дефектів ФЕМСЕ з інтеграцією передових алгоритмів 

машинного навчання, таких як модель згорткової нейронної мережі YOLOv12m-

seg, та оптимізацією процесу зйомки за рахунок використання лазерного 

далекоміра та даних про положення Сонця. 

Уперше розроблено архітектуру кіберфізичних систем моніторингу 

дефектів фотоелектричних модулів сонячних електростанцій на основі концепції 

периферійно-хмарного розподілу обробки даних. Новизною архітектури є 

формування її на принципах розподілу обчислень між бортовою і наземною 

системами управління БПЛА, системою диспетчерського управління і хмарним 

сервісом, що дозволяє здійснювати раціональне опрацювання даних та збереження 

результатів моніторингу дефектів фотоелектричних модулів із забезпеченням 

низької затримки у реальному часі, утримувати камери за заданим кутом 

спостереження, автоматично налаштовувати насиченість колірної палітри 

зображення, визначати режими роботи фотоелектричних модулів.  

Архітектура відрізняється можливістю інтегрування до програмно-

апаратних засобів Nvidia Jetson AGX Orin 32GB моделі згорткової нейронної 

мережі YOLOv12m-seg з реалізацією повного замкнутого циклу обробки даних 

безпосередньо на борту БПЛА, а саме: 

забезпечення високоточною GPS RTK навігацією та інерціальними 

сенсорами; 

управлінням кутом візування камер відносно площини панелей і положення 

Сонця; 

застосуванням моделі згорткової нейронної мережі YOLOv12m-seg для 

виявлення дефектів у режимі реального часу; 
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передачею лише релевантних даних з виявленими дефектами на наземну 

систему управління БПЛА.  

Використання системи дозволяє здійснювати швидкий і точний моніторинг 

великих масивів ФЕМСЕ без участі оператора, зменшити обсяг переданих даних і 

обчислювальне навантаження на наземні та хмарні системи, покращити якість 

діагностики завдяки адаптації кута зйомки відповідно до положення Сонця, 

підвищити ефективність технічного обслуговування ФЕМСЕ за рахунок 

своєчасного виявлення дефектів. 

Обґрунтовано вибір обчислювального середовища архітектури КФС 

моніторингу дефектів ФЕМСЕ. Особливістю обраного обчислювального 

середовища є забезпечення пошуку ФЕМСЕ і позиціонування БПЛА по центру 

робочої області ФЕМСЕ, що дозволяє визначати оптимальне положення вісі камер 

для мінімізації відблисків під час моніторингу ФЕМСЕ. Інтеграція з лазерним 

далекоміром підвищує точність орієнтації. 

Розроблено алгоритм визначення оптимального напрямку візування 

тепловізійної камери на сонячну панель з метою мінімізації впливу сонячних 

відблисків. 

 

 

Основні результати розділу опубліковані у працях [52; 53; 55; 116]. 
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РОЗДІЛ 3.  

МЕТОДИ МОНІТОРИНГУ ДЕФЕКТІВ ФОТОЕЛЕКТРИЧНИХ МОДУЛІВ 

СОНЯЧНИХ ЕЛЕКТРОСТАНЦІЙ 

 

 

Умовно складовими КФС є програмно-апаратні засоби системи 

диспетчерського управління SCADA, хмарного сервісу і БПЛА. Саме остання 

складова є визначальною в обробці даних. Це потребує більш детального розгляду 

процесу обробки даних програмно-апаратними засобами БПЛА. 
 

3.1. Метод обробки даних програмно-апаратними засобами бортової 

системи управління БПЛА при моніторингу дефектів фотоелектричних модулів 

 

Основні етапи обробки даних програмно-апаратними засобами бортової 

системи управління БПЛА такі: 

1) налаштування БПЛА та обладнання;  

2) завантаження польотного завдання та координат фотоелектричних 

модулів; 

3) географічна прив'язка місцеположення БПЛА, розробка маршруту; 

4) візування камер, зйомка, передача зображення на бортовий комп’ютер; 

5) попередня обробка даних, фільтрація, калібрування; 

6) при виявленні малих дефектів на трипалітровій термограмі модуля із 

застосуванням ЗНМ здійснюється повернення БПЛА до даного модуля, змінюється 

візування камер і проводиться повторна зйомка з метою підвищення достовірності 

виявлення; 

7) двоетапне ансамблювання дефектів ЗНМ; 

8) передача релевантних результатів на наземну систему управління 

БПЛА у форматі JSON. 

Після початку виконання місії здійснюється зйомка і захоплення зображення 

камерами БПЛА. Відеокамера охоплює видимий діапазон спектру, що дозволяє 
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фіксувати візуальні ознаки дефектів, тепловізійна камера дозволяє фіксувати 

ознаки дефектів в інфрачервоному спектрі. Далі відбувається передача отриманих 

зображень до бортового комп'ютера, у який заздалегідь завантажена та настроєна 

програма для обробки зображення разом з моделлю навчання.  

На етапі попередньої обробки зображення готуються до подальшого аналізу 

та покращується їхня якість. Однією з основних цілей є калібрування зображень 

для усунення спотворень, спричинених оптикою камер. Це включає в себе 

корекцію дисторсії (оптичне викривлення зображення через недосконалість лінз у 

камерах). Калібрування камер та коригування дисторсії проводиться з 

використанням пінхол-моделі. На цьому етапі також виконується масштабування 

зображень. 

Перед початком обробки зображення з тепловізійної камери обробляються в 

початковій роздільній здатності 640x512 пікселів для максимального збереження 

теплової інформації та уникнення втрат температурних градієнтів, а RGB 

зображення обробляються методом ковзкого вікна з розміром патчів 1024x1024 

пікселів з 20 % перекриттям. Це дозволяє ефективно використовувати 20MP 

роздільну здатність RGB камери H20T та забезпечує детальний аналіз дрібних 

дефектів без втрати просторової інформації. 

При зйомці фотоелектричних модулів негативний вплив спричиняє 

утворення сонячних відблисків від поверхні панелей, які можуть повністю 

маскувати дефекти або створювати хибні спрацювання системи детекції. Для 

вирішення цієї проблеми застосуємо математичну модель автоматичного 

позиціонування камери спостереження, яка забезпечує оптимальний кут зйомки 

без відблисків. 

Математична модель базується на векторному аналізі геометричних 

співвідношень між трьома основними векторами системи: 

𝑛 – одиничний вектор нормалі до поверхні фотоелектричного модуля; 

𝑠 – одиничний вектор напрямку сонячного проміння (розраховується за 

астрономічними формулами); 

𝑐 – одиничний вектор візування камери (підлягає оптимізації). 
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Сонячний промінь, падаючи на поверхню ФЕМСЕ, дзеркально відбивається 

згідно з законом геометричної оптики. Вектор дзеркального відбиття r 

визначається за формулою: 

𝑟 =  2(𝑛 ·  𝑠)𝑛 −  𝑠,      (3.1) 

де (𝑛 ·  𝑠) – скалярний добуток векторів, що характеризує кут падіння. 

Оцінка нормалі поверхні n здійснюється на основі високоточного GPS RTK. 

Нехай у локальній системі координат за результатами RTK-позиціонування відомі 

три не колінеарні (не лежать на одній прямій) реперні точки площини 

фотоелектричного модуля: 

𝑃1  =  (𝑥1, 𝑦1, 𝑧1), 𝑃2  =  (𝑥2, 𝑦2, 𝑧2), 𝑃3  =  (𝑥3, 𝑦3, 𝑧3).  (3.2) 

Тоді одиничний вектор нормалі визначається як:  

𝑛 =  ((𝑃2 − 𝑃1) × (𝑃3 − 𝑃1))
‖(𝑃2 − 𝑃1) × (𝑃3 − 𝑃1)‖

.     (3.3) 

Розглянемо критерій уникнення відблисків. Щоб уникнути потрапляння 

дзеркально відбитого сонячного проміння в об'єктив камери, кут θ між вектором 

відбиття r та вектором візування c повинен перевищувати мінімальний поріг: 

𝜃 =  𝑎𝑟𝑐𝑐𝑜𝑠(𝑟 ·  𝑐)  ≥  𝛥.     (3.4) 

Мінімальні значення кутового відступу Δ становлять для RGB камера 10-15°, 

для інфрачервоної камери 5-10°. Для знаходження оптимального вектору візування 

використовується метод обертання вектору r на мінімальний кут Δ навколо осі u, 

алгоритм визначення такий: 

1) визначається вісь обертання 

𝑢 =  
(𝑛 ×  𝑠)
‖𝑛 ×  𝑠‖                                               (3.5) 

2) за формулою Родріґеса визначається єдиний оптимальний напрямок 

візування: 

𝑐 =  𝑟 ·  𝑐𝑜𝑠(𝛥) + (𝑢 ×  𝑟)  ·  𝑠𝑖𝑛(𝛥) +  𝑢(𝑢 ·  𝑟)(1 − cos(𝛥)),  (3.6) 

де 𝑐 – вектор оптимального напрямку візування; 𝑟 – вектор дзеркального відбиття; 

𝑢 – одиничний вектор осі обертання (∥𝑢∥=1); 𝛥 – мінімальний кутовий відступ 
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обертання вектору відбиття r навколо осі u для отримання оптимального напрямку 

візування с що гарантує уникнення відблисків. 

Інтеграція RTK і формули Родріґеса є необхідною умовою для побудови 

точної нормалі n і вектору відбиття r. 

 Схему векторів оцінки впливу сонячних відблисків на фотоелектричний 

модуль подано на рис. 3.1. 

 
Рисунок 3.1 – Схема векторів оцінки впливу сонячних відблисків на 

фотоелектричний модуль 

 

Математична модель забезпечує гарантоване уникнення відблисків (кут 

θ=Δ), адаптацію до положення Сонця протягом дня і різної орієнтації 

фотоелектричних модулів.  

Розробимо алгоритм реалізації моделі. Вихідними даними для реалізації 

алгоритму є географічні координати місця зйомки, дата і час у форматі UTC, 

орієнтація панелі, кут уникнення відблиску. Алгоритм реалізації моделі такий: 

1. Розрахувати одиничний вектор нормалі для трьох RTK-точок на основі 

високоточного геопросторового позиціонування GPS RTK (3.3). 

2. Розрахувати поточне положення Сонця за астрономічними даними 

(вектор s). 

3. Обчислити вектор дзеркального відбиття (3.1). 

4. Побудувати вісь обертання (3.5). 
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5. Розрахувати вектор оптимального напрямку візування за формулою 

Родріґеса. 

6. Перетворити вектор c у кути керування гімбалом (підвісом) камери по 

вертикалі pitch=-asin(cz), по горизонталі yaw=atan2(cy,cx) і передати до контролера 

гімбала для орієнтації камери.  

Розглянута математична модель забезпечує автоматичне інтелектуальне 

позиціонування камери БПЛА, що дозволяє отримувати якісні зображення 

фотоелектричних модулів без втрати інформації через сонячні відблиски. Модель 

є математичною основою для підвищення оперативності, ефективності 

розпізнавання режимів роботи фотоелектричних, автоматизованого моніторингу 

стану ФЕМСЕ. 

Для подальшої обробки даних застосовується математичне моделювання, що 

дозволяє візуалізувати дефекти фотоелектричних модулів. Для захоплення 

зображень використовується тепловізійна камера, яка моделюється за допомогою 

пінхол-моделі, що описує геометрію зйомки в задачах комп'ютерного зору та 

фотографії. 

 Пінхол-модель використовується для визначення геометричних параметрів 

зображень, що є важливим для калібрування камери та корекції дисторсії. 

Калібрування та корекція дисторсії є етапом попередньої обробки зображень, 

спрямованим на покращення якості вхідних даних [2; 4; 5]. 

У пінхол-моделі координати точки на площині зображення обчислюються за 

допомогою формул: 

𝑥 =  𝑓 ∙  𝑍𝑥,  𝑦 =  𝑓 ∙  𝑍𝑦,      (3.7) 

де 𝑥, 𝑦 – горизонтальна та вертикальна координати точки; 𝑓 – фокусна 

відстань; 𝑍 – відстань від точки до камери вздовж осі 𝑍. 

Обробка зображення ґрунтується на використанні нейромережевих 

технологій детектування об'єктів (Object detection) у режимі реального часу на 

основі архітектурного принципу anchor-free [6-8]. Для моніторингу дефектів 

ФЕМСЕ модель згорткової нейронної мережі YOLOv12m-seg було обрано як 
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найбільш придатну завдяки оптимальному балансу швидкості обробки та точності 

для застосування в польових умовах з обмеженими обчислювальними ресурсами. 

Процес виявлення дефектів ЗНМ ґрунтується на anchor-free підході: модель 

без попередньо визначених опорних рамок (anchor boxes) напряму прогнозує 

параметри обмежувальних прямокутників і маски сегментації, що спрощує 

архітектуру та підвищує швидкодію. Для кожної позиції (grid) детектор прогнозує 

набір боксів із параметрами (bx, by, bw, bh), де (bx, by) — координати центру 

об'єкта, а (bw, bh) — ширина та висота відповідно. Одночасно для кожного боксу 

обчислюються класові оцінки довіри 𝑝𝑘 =  𝜎(𝑧𝑘) із застосуванням сигмоїди. 

Сегментаційна гілка (seg) додатково формує M прототипних масок P розміром 

H×W і, для кожного детектування, вектор коефіцієнтів α; інстанс-маска 

відтворюється як 𝑚 =  𝜎(∑ 𝛼𝑖  ·  𝑃𝑖
𝑀
𝑖=1 ), після чого обрізається межами 

відповідного боксу та масштабується до розміру вхідного зображення. Контури 

дефектів отримують із бінаризованої інстанс-маски (за порогом τ), тоді як рамки 

використовуються для відбору (NMS) та просторового обрізання масок. 

Підсумкова впевненість у детекції (Confidence Score) як числовий показник 

упевненості нейромережі в тому, що виявлений об'єкт належить до конкретного 

класу, в моделі згорткової нейронної мережі YOLOv12m-seg визначається як 

sigmoid-активована оцінка класу:  

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 =  𝜎(𝑐𝑙𝑎𝑠𝑠_𝑠𝑐𝑜𝑟𝑒),    (3.8) 

де 𝜎(𝑐𝑙𝑎𝑠𝑠_𝑠𝑐𝑜𝑟𝑒) представляє сигмоїдну функцію активації, застосовану до 

вихідної оцінки класу. Використання sigmoid для класових оцінок дозволяє 

обробляти сценарій multi-label classification, коли об'єкт може одночасно належати 

до декількох класів, оскільки кожен клас оцінюється незалежно. 

Після обчислення confidence scores для всіх виявлених об'єктів 

застосовується алгоритм Non-Maximum Suppression (NMS) до допоміжних 

bounding boxes із використанням порогового значення IoU (зазвичай 0.5) та порогу 

впевненості (зазвичай 0.25), що дозволяє відкинути дублюючі детекції. Алгоритм 

NMS працює ітеративно: спочатку відбирається детекція з найвищим confidence 
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score, потім усі детекції з IoU > 0.5 відносно вибраної видаляються як дублікати, 

процес повторюється до опрацювання всіх детекцій. 

Після застосування NMS до bounding boxes відповідні маски сегментації 

обрізаються межами відібраних рамок і масштабуються до розміру вхідного 

зображення. З результуючих масок формуються фінальні піксельно-точні контури 

дефектів шляхом бінаризації за пороговим значенням (зазвичай 0.5). 

Таким чином, процес виявлення дефектів фотоелектричних модулів із 

використанням зображень БПЛА та ЗНМ включає аналіз кожної ділянки 

зображення нейронною мережею для одночасного прогнозування точних контурів 

дефектів і їх класифікації за типами. Модель генерує піксельно-точні маски 

сегментації, з яких формуються обриси дефектних областей, що забезпечує значно 

вищу точність локалізації порівняно з простими прямокутними рамками. Модель 

будує ієрархію ознак для кожного виявленого дефекту на зображенні, включаючи 

форми, текстури та колірні особливості, що дозволяє розрізняти дефекти 

фотоелектричних модулів. 

В межах дослідження модель навчена на спеціалізованих даних, що 

включають зображення ФЕМСЕ без і з дефектами. Модель автоматично витягує 

текстурні ознаки, такі як характерні візерунки «гарячих точок», контури окремих 

фотоелектричних елементів або прямокутні сегменти рядків як перегрітих частин 

ФЕМСЕ, що дозволяє моделювати термографічні зображення дефектів і розрізняти 

три основних класи дефектів. Модель також аналізує зміни кольорів, характерні, 

наприклад, червоний колір дефектів на фоні чорно-білого зображення, що 

особливо важливо при виявленні «гарячих точок» в окремих невеликих осередках 

дефектів. Модель аналізує форму та розміри дефектів, що дозволяє 

диференціювати значимість дефектів щодо пожежної небезпеки сонячної 

електростанції. 

На завершальному етапі об'єднуються результати аналізу на основі 

ансамблювання RGB зображень і тепловізійних: вибираються найбільш ймовірні 

прогнози, після чого формуються фінальні виявлення із зазначенням контурів 

сегментованих дефектів, класів дефектів та їх ймовірностей. Цей підхід забезпечує 
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підвищення точності детекції порівняно з використанням окремих типів 

зображень, надаючи дані для автоматизованого моніторингу та прийняття рішень 

у сонячній енергетиці. 

Карта оцінок довіри confidence scores показує рівень впевненості моделі в 

тому, що кожна ділянка зображення належить певному класу дефекту (наприклад, 

секції фотоелектричного модуля, окремій комірці). На підставі карт оцінок довіри 

модель визначає фінальні контури (маски сегментації) для ділянок, де модель 

найбільш впевнена у наявності дефектів.  

Основною проблемою традиційних методів Object Detection при моніторингу 

дефектів є повторне виявлення однакових дефектів на перекривних кадрах 

зображень, що призводить до завищення кількості дефектних фотоелементів. Це 

пов'язано з тим, що однакові дефекти, наприклад, пошкоджена секція ФЕМСЕ, 

може бути виявлена на декількох кадрах зображень, що залежить від зовнішніх 

умов і параметрів польоту БПЛА. Для вирішення цієї проблеми та підвищення 

точності діагностики дефектів окремих модулів і цілих стрінгів панелей 

використано алгоритм високоточного геопросторового позиціонування дефектів. 

Геопросторове співставлення дозволяє виключити повторне виявлення вже 

ідентифікованих дефектів, що значно знижує кількість дублюючих та хибних 

спрацювань. Алгоритм ідентифікує та корелює дефекти між кадрами, базуючись на 

їх географічному положенні. Основні етапи цієї технології включають 

перетворення піксельних координат виявлених дефектів у географічні координати 

з використанням GPS RTK даних БПЛА та просторової роздільної здатності 

зображення. Потім відбувається просторова кореляція дефектів між суміжними 

кадрами на основі географічної близькості (в межах точності RTK). 

Технологія геопросторового позиціонування включає обробку перекривних 

областей між кадрами та уникнення дублювання дефектів у зонах overlap, визначає 

його точні GPS координати з підвищенням точності ідентифікації дефектів. 

Геопросторове співставлення базується на високоточних GPS RTK 

координатах (сантиметрова точність) та Ground Sample Distance (GSD) для 

перетворення піксельних координат дефектів у географічні. Це забезпечує надійну 
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ідентифікацію однакових дефектів між кадрами без використання складних 

алгоритмів motion tracking, призначених для динамічних об'єктів. Алгоритм 

використовує два основні математичні методи: просторову кореляцію через 

географічні координати та IoU (Intersection over Union) overlap detection як 

резервний метод для випадків недостатньої GPS точності. 

Просторова кореляція використовується для визначення подібності між 

дефектами на основі їх географічного розташування з застосуванням формули 

гаверсинуса для розрахунку відстаней між GPS координатами. Цей метод дозволяє 

враховувати точність GPS RTK системи та GSD зображення, що робить його 

надійним для ідентифікації статичних об'єктів. Географічна відстань між 

дефектами визначається за формулою гаверсинуса: 

𝑑(𝑝, 𝑞) = 2𝑅 · 𝑎𝑟𝑐𝑠𝑖𝑛 (√( 𝑠𝑖𝑛²(𝛥𝜑/2)  +  𝑐𝑜𝑠 𝜑₁ ·  𝑐𝑜𝑠 𝜑₂ ·  𝑠𝑖𝑛²(𝛥𝜆/2) )),  (3.9) 

де 𝑑(𝑝, 𝑞) – відстань між точками 𝑝 та 𝑞, м; 𝑅 – радіус Землі (6371 км); 𝜑₁, 𝜑₂ – 

широта точок; 𝛥𝜑 – різниця широти; 𝛥𝜆 – різниця довготи. 

Сантиметрова точність RTK-позиціонування впливає на вхідні дані формули: 

координати 𝜑₁, 𝜆₁ і 𝜑₂, 𝜆₂. Вони визначаються з RTK-антени з похибкою у 

сантиметри замість метрів. Таким чином, параметри 𝜑 та 𝜆 у формулі є тими 

змінними, точність яких визначається RTK. Після обчислення 𝑑(𝑝, 𝑞) значення 

порівнюється з порогом 𝜀, який задається як: 

𝜀 ≈  √(𝜎𝑅𝑇𝐾
2  + 𝜎𝐺𝑆𝐷

2 ),     (3.10) 

де 𝜎𝑅𝑇𝐾
2  - похибка RTK, а 𝜎𝐺𝑆𝐷

2 - похибка перетворення пікселів у метри через GSD. 

Якщо 𝑑(𝑝, 𝑞) ≤ 𝜀, тоді вважається, що на різних кадрах було виявлено один і 

той самий фізичний дефект, і дублікати виключаються з подальшої обробки. 

Таким чином, просторове перетворення координат у поєднанні з формулою 

гаверсинуса забезпечує надійну кореляцію статичних дефектів між перекривними 

знімками.  

IoU overlap detection використовується як додатковий метод для перевірки 

перекриття bounding boxes дефектів у піксельних координатах, що забезпечує 
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більш стабільне та надійне співставлення об'єктів в умовах високої щільності 

дефектів. 

Цей процес дозволяє отримати маску, що вказує на дефекти ФЕМСЕ. Після 

того, як алгоритм згорткової нейронної мережі проаналізував зображення, він 

виділяє області, які класифікуються як дефекти. На цьому етапі кожен дефект 

представлений у вигляді маски, в якій формується файл JSON, що містить 

структуровані дані про детекцію.  

Отриманий JSON файл з піксельними координатами виявлених дефектів 

дійсно є відправною точкою для визначення їхнього географічного розташування. 

Для перетворення цих піксельних координат на географічні необхідно 

використовувати алгоритми просторової обробки даних, спираючись на 

географічні координати центру фотографії та просторову роздільну здатність 

зображення (Ground Sample Distance - GSD). 

Географічна прив'язка зображень забезпечується високоточною навігацією 

(GPS RTK) БПЛА під час зйомки сонячних електростанцій, що гарантує наявність 

географічних координат з точністю ±1-2 см, пов'язаних з кожним отриманим 

зображенням. JSON файл також включає поля latitude та longitude в метаданих 

зображення. 

Для точного переведення піксельних координат у метричні на місцевості 

необхідно знати просторову роздільну здатність зображення (GSD). GSD визначає 

розмір пікселя на земній поверхні та залежить від висоти польоту, фокусної 

відстані камери та розміру матриці сенсора. Нижча висота польоту забезпечує 

кращу роздільну здатність (менший GSD) та дозволяє виявляти дрібніші дефекти. 

Для виконання перетворення піксельних координат на географічні 

використовуються алгоритми, що враховують перспективу та дисторсію 

зображення, а також параметри калібрування камери, пінхол-модель. Знаючи 

географічні координати центру зображення та GSD, а також припускаючи пласку 

поверхню (або використовуючи дані про висоту панелі), можна розрахувати 

географічні координати будь-якої точки на зображенні. 
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Результати аналізу, включаючи GPS координати виявлених дефектів, 

класифікацію за типами та рівнем значимості, передаються на базову станцію для 

подальшого аналізу, оцінки пожежонебезпечного стану, планування ремонтних 

робіт та збереження даних у хмарі. 

Піксельні координати (𝑥, 𝑦) перетворюються на зсув щодо центру 

зображення. Нехай центральні координати пікселів будуть (𝐶𝑥, 𝐶𝑦). Тоді зсув щодо 

центру можна визначити за такими формулами: 

𝛥𝑥 =  (𝑥 − 𝐶𝑥)  ·  𝐺𝑆𝐷,     (3.11) 

𝛥𝑦 =  (𝑦 − 𝐶𝑦) ·  𝐺𝑆𝐷,     (3.12) 

де 𝛥𝑥, 𝛥у – зміщення в метрах по осях, м; 𝑥, у – координати пікселя на зображенні, 

px; 𝐶𝑥, 𝐶𝑦  – координати центрального пікселя зображення, px; 𝐺𝑆𝐷 – просторова 

роздільна здатність (Ground Sampling Distance), що визначає розмір пікселя на 

землі, м/px. 

Структуру обробки даних програмно-апаратних засобів бортової системи 

управління БПЛА при моніторингу дефектів фотоелектричних модулів подано у 

вигляді окремих блоків, рис. 3.2 [117]. 

Опис структури обробки даних. 

1. Блок збору даних. 

Суть обробки даних 1 блоком. Здійснює первинне збирання візуальної та 

телеметричної інформації про стан фотоелектричних модулів. БПЛА виконує 

автономний політ за запрограмованим маршрутом, одночасно фіксуючи RGB та 

інфрачервоні зображення панелей з прив'язкою до точних GPS координат. 

Лазерний далекомір забезпечує точне визначення місцеположення ФЕМСЕ, 

уникнення відблисків при зйомці.  

2. Блок попередньої обробки. 

Суть обробки даних 2 блоком. Підготовлює отримані зображення до 

нейромережевого аналізу шляхом усунення оптичних спотворень та оптимізації 

якості. Пінхол-модель корегує геометричні параметри зображення, усуваючи 

дисторсії лінз. Метод ковзного вікна фрагментує високоякісні RGB зображення на 

оптимальні для обробки сегментів з перекриттям 20 %. Алгоритм оптимального 
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наведення використовує формулу Родріґеса для автоматичного позиціонування 

камери з уникненням сонячних відблисків. 
 

Блок збору даних 

Блок нейромережевої детекції 

Блок попередньої обробки 

Блок геопросторового позиціонування 

Блок кластеризації дефектів 

1. Блок збору даних 

4. Блок нейромережевої детекції 

2. Блок попередньої обробки 

3. Блок геопросторового позиціонування 

5. Блок передачі та зберігання 

 
Рисунок 3.2 – Структура обробки даних програмно-апаратних засобів 

бортової системи управління БПЛА при моніторингу дефектів фотоелектричних 

модулів 

 

3. Блок геопросторового позиціонування. 

Суть обробки даних 3 блоком. Забезпечує точну географічну прив'язку 

виявлених дефектів з сантиметровою точністю. Крім геокодування дефектів, RTK-

дані визначають нормаль n площини ФЕМСЕ, яка є вхідною змінною для побудови 

векторів r та u та наступного обертання за Родріґесом під час антивідблискового 

наведення камери. 

Піксельні координати дефектів перетворюються у географічні на основі GPS 

RTK даних БПЛА та просторової роздільної здатності (GSD). Формула гаверсинуса 

розраховує відстані між GPS координатами для ідентифікації однакових дефектів 

на перекривних кадрах. IoU аналіз служить резервним методом верифікації. Це 

виключає повторне виявлення ідентичних дефектів та підвищує точність 

діагностики. 

4. Блок нейромережевої детекції. 
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Суть обробки даних 4 блоком. Виконує інтелектуальну ідентифікацію та 

класифікацію дефектів фотоелектричних модулів у режимі реального часу. ЗНМ 

аналізує кожен сегмент зображення, прогнозуючи координати та типи дефектів без 

використання попередньо визначених anchor boxes. Обчислюється впевненість 

детекції через добуток оцінки об'єктивності та класової оцінки. NMS алгоритм 

відфільтровує дублюючі детекції, залишаючи найбільш релевантні. 

Ансамблювання RGB та ІЧ зображень підвищує точність детекції, зменшує 

навантаження на канал передачі даних. 

5. Блок передачі та зберігання. 

Суть обробки даних 5 блоком. Забезпечує передачу, зберігання та аналіз 

результатів моніторингу. MQTT протокол передає JSON дані з результатами 

детекції від бортового комп'ютера до наземного у реальному часі. Хмарна 

платформа Microsoft Azure централізовано збирає, зберігає та обробляє всю 

телеметрію.  

Отже, удосконалено метод обробки даних програмно-апаратними засобами 

бортової системи управління БПЛА при моніторингу дефектів фотоелектричних 

модулів, який відрізняється комплексним поєднанням алгоритмів високоточного 

геопросторового позиціонування GPS RTK та нейромережеві технології. Метод 

забезпечує повністю автоматизований цикл діагностики від збору даних до 

формування звітів.  

Практична значимість методу полягає у наступному: 

1. Підвищення точності детекції, зменшення обсягу переданої з БПЛА 

інформації за рахунок застосування ЗНМ з ансамблюванням RGB та 

термографічних зображень. 

2. Зниження кількості хибних спрацювань завдяки високоточному 

геопросторовому позиціонуванню (GPS RTK+GSD). При цьому RTK-

позиціонування забезпечує оцінку нормалі n, необхідну для обчислення 

оптимального напряму візування за формулою Родріґеса. 

3. Забезпечення стабільно високої якості зображень незалежно від положення 

Сонця за рахунок математичного моделювання оптимального напрямку візування 
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камер з використанням формули Родрігеса для мінімізації впливу сонячних 

відблисків. 

4. Реалізація передачі результатів у реальному часі за протоколом MQTT у 

компактному JSON-форматі з бортової на наземну систему управління, 

централізоване зберігання через Azure IoT Hub та досягнення сантиметрової 

точності позиціонування дефектів з формуванням структурованих результатів у 

стандартизованих форматах. 

 

3.2. Етапи навчання згорткової нейронної мережі для виявлення дефектів 

фотоелектричних модулів 

 

Початковим етапом використання нейронної мережі є збір даних. Цей процес 

включає збір зображень сонячних модулів, їх аналіз і попередню обробку, таку як 

масштабування і аугментація. Далі слідує розробка та налаштування ЗНМ, 

ініціалізуються ваги з використанням заздалегідь навчених моделей, та 

визначаються функції втрат та метрики для навчання. 

Навчання моделі відбувається шляхом оптимізації ваги з використанням 

методів градієнтного спуску. Паралельно проводиться валідація моделі для 

запобігання перенавчанню. На завершальному етапі аналізуються результати і 

допрацьовується модель покращення точності і надійності виявлення дефектів. 

Для донавчання використовувалася попередньо натренована модель 

YOLOv12-seg, базові ваги якої були завантажені з офіційного репозиторію 

Ultralytics. Ці ваги отримано в результаті попереднього навчання на відкритому 

наборі даних COCO (Common Objects in Context), який містить понад 118000 

зображень із 80 класами об'єктів. Незважаючи на те, що база даних COCO не 

містить зображень фотоелектричних модулів та їх дефектів, використання 

попередньо натренованих ваг формує універсальні репрезентації, які адаптуються 

до вузькоспеціалізованих завдань [16; 17; 39]. 

Власний набір даних для подальшого донавчання моделі сформовано у 2025 

році шляхом анотування зображень, отриманих із 212 фотоелектричних модулів, 
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серед яких 12 було відбраковано. З кожного модуля отримано три зображення: одне 

RGB та дві термограми в різних палітрах (M2 та M3), що в сумі становить 600 

зображень. Анотування здійснювалося на рівні окремих дефектів, кількість яких у 

середньому становила від 1 до 5 на модуль, формуючи загальний обсяг приблизно 

1900 анотованих масок сегментації. 

Таким чином, застосування методу трансферного навчання на базі 

попередньо натренованих ваг дозволило компенсувати відносно невеликий розмір 

власного набору даних. Завдяки використанню попередньо натренованих ваг на 

великомасштабному наборі COCO та подальшому донавчанню на 600 зображеннях 

із 1900 анотованими дефектами, модель досягла високих показників точності 

(mAP50 ≈ 90%), що підтверджує достатність сформованого набору даних для 

розв'язання поставленого завдання детекції дефектів фотоелектричних модулів. 

Методика формування навчального набору є важливим етапом у розробці 

КФС. Для навчального набору даних використовуються дані зібрані протягом 2025 

року на території ХНУ та сонячної електростанції в Хмельницькій області. 

Збір зображень здійснювався за допомогою БПЛА Matrix-300 з RGB і 

тепловізійною камерою, смартфоном з тепловізійною камерою DOOGEE V20 Pro, 

переносним тепловізором JSA-25, айфоном iPhone 13. Використання різних 

пристроїв є широко застосовуваним підходом у цій галузі, так як це надає 

різнорідні та репрезентативні дані. Не використовувалась база даних з інтернет-

мережі, оскільки відповідно до розроблених методів мають бути зображення 

одного об’єкта з одного ракурсу в 2 і 3 колірній палітрах термограм і RGB спектрі. 

Загалом було зібрано по 212 зображень для кожної палітри термограм і RGB 

знімків. Після попередньої обробки та відсіювання неякісних знімків для 

подальшого аналізу було відібрано 200 зображень кожного типу, всього 600. До 

попередньої обробки роздільна здатність термограм становила від 160 до 640 

пікселів, залежно від використаного пристрою зйомки. Зйомка проводилася на 

відстанях від 2 м до 4 м від фотоелектричних модулів для мобільних пристроїв, а 

для БПЛА висота зйомки 5-15 м над панелями. Фотографії робилися з різних 
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ракурсів для врахування різноманітних умов, особливо наявність відблисків, з 

якими можуть зіткнутися користувачі моделі в майбутньому. 

Для початку навчання необхідно провести попередню обробку отриманих 

даних. Навчання моделей відбувається швидше при меншому розмірі зображень. 

Всі зображення на початку були приведені до розміру 160x160 пікселів, що є 

стандартним розміром для багатьох версій моделей навчання. Цей розмір дозволяє 

збалансувати між швидкістю і точністю навчання, так як менші зображення 

обробляються швидше, але можуть містити менше деталей. Також розмір 

зображення повинен бути кратний 32, тому що в архітектурі YOLO 

використовуються шари згортки з зменшенням розмірності. Методика зміни 

розміру така. Для вхідного зображення розміром H∙W∙Cз фільтром розміром k∙k, 

відступ p і крок s, розмір вихідного тензора [14; 15]: 

𝑂𝑢𝑡𝑝𝑢𝑡 𝑠𝑖𝑧𝑒 =  ⌊𝐻 + 2𝑠𝑝 − 𝑘 +  1⌋  ·  ⌊𝑊 +  2𝑠𝑝 −  𝑘 +  1⌋  ·  𝐹,  (3.13) 

де 𝐻 - висота вхідного зображення, pix; 𝑊 – ширина вхідного зображення, px; 𝐶 – 

кількість каналів вхідного зображення, 𝑘 – розмір фільтра (𝑘 ∙ 𝑘), px; 𝑝 - розмір 

заповнення відступу (padding), px; 𝑠 - крок (stride) фільтра, px; 𝐹 – кількість 

фільтрів. 

Для пулінгу вікна розміром 𝑝 × 𝑝 та кроком 𝑠, розмір вихідного тензора: 

𝑡𝑒𝑥𝑡𝑂𝑢𝑡𝑝𝑢𝑡𝑠𝑖𝑧𝑒 =  ⌊𝐻 − 𝑠𝑝 +  1⌋  ·  ⌊𝑊 −  𝑠𝑝 +  1⌋  ·  𝐶   (3.14) 

де 𝑝 - розмір пулінга вікна (𝑝 ∙ 𝑝), px. 

Пулінг це операція згорткової мережі, яка використовується для зменшення 

просторових розмірів (ширини, висоти) тензора ознак, зберігаючи важливу 

інформацію. Вона знижує обсяг обчислень, зменшує кількість параметрів моделі та 

допомагає уникнути перенавчання. При кожному такому шарі розмір зображення 

зменшується вдвічі. Починаючи з 640, після кількох зменшень отримуємо 

цілочисленні розміри, що важливо для коректної роботи згорткової мережі. 

Алгоритм процесу зменшення розмірності зображення в архітектурі YOLO на 

основі її узагальнення такий: 

1. Отримання вхідного зображення 160х160х2. 

2. Максимальний пулінг 160х160хF. 
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3. Згортка зображення 80х80хF. 

При зміні розміру зображення піксельні значення зменшуються, і небажана 

область інтересу відкидається. Кожен модуль складається з декількох десятків 

фотоелектричних елементів, які, в свою чергу, складаються з матриці 

фотоелементів, що перетворюють сонячну енергію в електричну. Відмова будь-

якого фотоелектричного модуля або його частини може привести в меншій мірі до 

падіння виробітку електроенергії і у більшій мірі до пожежі через не спрацювання 

байпасних діодів. Найбільш ефективним методом ідентифікації та контролю 

дефектних модулів є інфрачервона термограма. 

Кожне інфрачервоне зображення проходило візуальну перевірку для оцінки 

його якості та інформативності. Фотографії, які не містили важливу інформацію 

(наприклад, без дефектів), видалялися. Всім зображенням, які пройшли контроль 

якості, присвоювалася мітка, що відповідає виявленому дефекту. 

Отримана база даних включала зображення, що відображають 

різноманітність дефектів та умов запису зображень. Зображення були збережені у 

колірному просторі термограм у форматі PNG. База даних включала зображення 

основних моделей дефектів. Для розробки алгоритму розпізнавання було створено 

базу даних зображень. 

Після візуального перегляду всіх фотографій для створення навчального 

набору даних потрібно розділити фотографії на тренувальні, валідаційні та тестові 

набори даних. 

Поділ даних на тренувальний, валідаційний та тестовий набори у 

співвідношенні 80/10/10 є стандартним підходом навчання нейронних мереж, що 

здійснюється з метою: 

1. Оцінки продуктивності моделі: 

- тренувальний набір використовується для навчання моделі. Модель 

«вчиться» знаходити залежності та закономірності у даних; 

- тестовий набір служить для оцінки продуктивності моделі на нових, 

небачених даних. Це допомагає зрозуміти, наскільки добре модель працюватиме в 

реальних умовах. 
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2. Запобіганню перенавчанню: 

- перенавчання відбувається, коли модель занадто добре запам'ятовує 

тренувальні дані, але не може узагальнювати нові дані; 

- поділ даних дозволяє виявити перенавчання, оскільки модель, яка добре 

працює на тренувальному наборі, але погано на тестовому, швидше за все 

перенавчена. 

3. Отримання об'єктивної оцінки. Поділ даних дозволяє об'єктивно 

оцінити, як добре модель справляється із завданням. Без тестового набору оцінка 

була б необ'єктивною, оскільки модель вже знає відповіді на тренувальних даних.  

4. Тонке налаштування моделі. Наявність тестового набору дозволяє 

використовувати тренувальний набір для підбору гіперпараметрів, а потім оцінити, 

наскільки ці налаштування покращують продуктивність на тестових даних. 

5. Розробка та тестування. У процесі розробки часто використовується 

додатковий валідаційний набір (частина тренувального набору), щоб 

контролювати якість моделі під час навчання та коригувати гіперпараметри. 

Остаточна оцінка проводиться на тестовому наборі, який не використовувався у 

процесі розробки моделі. 

Для поділу на тренувальні, валідаційні та тестові набори використано 

бібліотеку scikit-learn, що є популярною бібліотекою для машинного навчання у 

Python. Спочатку ділим дані на тренувальний і тимчасовий набір, а потім ділим 

тимчасовий набір на валідаційний і тестовий набори, забезпечуючи необхідні 

пропорції.  

Подана таблиця 3.1 містить інформацію про кількість фотографій для 

кожного виду моделі дефектів (1, 2, 3) у тренувальному (train), валідаційному (val) 

та тестовому (test) наборах даних.  

Таблиця 3.1 – Співвідношення кількість зібраних даних для навчання 
Вид моделі дефекту 

 
Кількість фото train val test 
шт. % 

1 60 10 48 6 6 
2 30 5 24 3 3 
3 510 85 408 51 51 

Загальні дані 600 100 80% 10% 10% 
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Найменша кількість фотографій перших двох видів пояснюється частотою 

відповідних дефектів фотоелектричних модулів та очевидно вчасним проведенням 

ремонтних робіт. 

Далі необхідно провести анотування зображень. Анотування зображень – це 

перетворення неструктурованих даних у структуровану форму, зрозумілу для 

глибокого навчання. Анотований (розмічений) набір даних – найважливіша 

частина машинного навчання. Зазвичай у дослідженнях використовують такі 

інструменти анотації, як LabelImg, Roboflow, YOLO_mark та багато інших. 

Для анотації даних використано інструмент CVAT, що є платформою 

комп'ютерного зору, яка дозволяє створювати моделі комп'ютерного зору та 

анотації зображень у поєднанні з аугментацією даних [19; 20]. 

Анотування з використанням програмного комплексу CVAT є процесом 

розмітки зображень, на яких видно ознаки різних дефектів. Для задач сегментації 

воно включає створення точних полігональних контурів навколо дефектних 

областей, їх класифікацію за типами та маркування розташування на зображенні. 

Процес виконується таким чином: 

завантаження зображень в інтерфейс CVAT; 

вибір типу розмітки "Polygon" для створення точних контурів дефектів; 

створення полігональних масок навколо кожного дефекту з присвоєнням 

відповідного класу. 

Після завершення розмітки та перевірки її якості для забезпечення точності 

та відповідності вимогам проєкту здійснюється експорт анотацій у форматі 

"Ultralytics YOLO Segmentation" до локального комп'ютера.  

В результаті створюється набір даних із розміченими контурами дефектів, 

який можна використовувати для машинного навчання автоматичного виявлення 

та сегментації дефектів на зображеннях. 

Для кожного об'єкта на зображенні у файлі анотації (формат YOLO 

segmentation) записуються такі дані: 

ідентифікатор класу: ціле число, що відповідає класу об'єкта, починаючи з 

нуля; 
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координати полігону: послідовність нормалізованих координат, що 

описують контур дефекту, де всі координати нормалізовані щодо ширини та висоти 

зображення. 

Ця структура та формат анотацій оптимізовані для навчання сучасних 

моделей YOLO з підтримкою сегментації, що дозволяє масштабувати та обробляти 

великі набори даних із точною локалізацією дефектів. 

Для навчання моделей YOLO використовувалися такі програмні та апаратні 

засоби як Python з бібліотекою PyTorch, яка підтримує CUDA. PyTorch був 

оптимізований для роботи з графічними процесорами (GPU), використовуючи 

технологію CUDA, що дозволяє значно прискорити обчислення завдяки 

паралельній обробці даних GPU.  

Архітектура моделі YOLO включає кілька шарів згортки, об'єднання та 

активації, які дозволяють моделі виділяти основні ознаки зображення, такі як межі 

і текстури об'єктів. Вхідний шар моделі обробляє вхідне зображення, змінюючи 

розмір до стандартного (наприклад, 160x160 пікселів), щоб забезпечити сумісність 

з архітектурою моделі. Згорткові шари послідовно застосовуються для виділення 

високорівневих ознак, таких як краї, кути та текстури. Шари об'єднання (Pooling) 

знижують розмірність даних, зменшуючи обчислювальне навантаження на інші 

шари та зберігаючи найважливіші ознаки. Завершальні шари моделі перетворять 

ознаки в прогнози про місцезнаходження об'єктів та їх класи. 

Після завершення етапу конфігурації архітектурних параметрів моделі 

розпочинається комплексний процес навчання нейронної мережі. Цей етап 

характеризується ітераційним пропусканням навчальних даних через архітектуру 

мережі з подальшою оптимізацією параметрів моделі шляхом мінімізації цільової 

функції втрат. Математичне формулювання функції втрат для задач детекції 

дефектів базується на багатокомпонентному підході, що інтегрує три складові: 

метрику точності локалізації координат обмежувальних прямокутників (bounding 

boxes), функцію оцінки ймовірності присутності цільового об'єкта в межах 

визначеної області, а також критерій класифікаційної точності для ідентифікації 

типу виявленого об'єкта. 
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В межах проведених експериментів було застосовано наступну конфігурацію 

гіперпараметрів навчального процесу. Загальна кількість навчальних ітерацій 

(епох) була встановлена на рівні 200, що забезпечує достатню тривалість для 

конвергенції моделі при збереженні обчислювальної ефективності. Розмір 

навчального пакета (batch size) складав 2 зразки, що обумовлено обмеженнями 

апаратних ресурсів та необхідністю стабілізації процесу градієнтного спуску. 

Для оптимізації параметрів мережі було обрано алгоритм Adam (Adaptive 

Moment Estimation), який демонструє високу ефективність при роботі з великими 

та розрідженими градієнтами. Конфігурація оптимізатора включала параметри: 

початкове значення швидкості навчання встановлено на рівні α=0.001, що 

відповідає рекомендованим значенням для даного класу задач; коефіцієнти 

моменту першого та другого порядків становили β₁=0.9 та β₂=0.999 відповідно, 

забезпечуючи оптимальний баланс між швидкістю конвергенції та стабільністю 

навчання; параметр числової стабільності ε=1×10⁻⁸ запобігає діленню на нуль при 

обчисленні адаптивної швидкості навчання; коефіцієнт L2-регуляризації ваг 

λw=0.0005 забезпечує контроль над складністю моделі та попереджає явище 

перенавчання. 

Просторова роздільність вхідних зображень для навчального процесу була 

стандартизована до розміру 160×160 пікселів, що представляє компромісне 

рішення між обчислювальною складністю та збереженням важливих деталей 

зображення для виявлення дефектів. Такий вибір розміру обумовлений специфікою 

термографічних зображень та необхідністю збереження просторової інформації 

про термальні аномалії. 

З метою попередження ефекту перенавчання було застосовано комплекс 

методів. Використано попередньо натреновані вагові коефіцієнти, отримані в 

результаті навчання на великомасштабному наборі даних ImageNet. Такий підхід, 

відомий як трансферне навчання, дозволяє моделі використовувати загальні 

візуальні представлення, вивчені на різноманітних природних зображеннях, як 

основу для специфічної задачі детекції дефектів на термограмах. 
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Додатково було застосовано косинусний планувальник швидкості навчання 

з механізмом теплих рестартів (cosine annealing with warm restarts), який забезпечує 

динамічну адаптацію швидкості навчання протягом тренувального процесу. Цей 

підхід сприяє уникненню локальних мінімумів функції втрат та покращує якість 

фінального рішення. 

Механізм раннього припинення навчання (early stopping) з параметром 

терпіння 10 епох було впроваджено як додатковий засіб контролю перенавчання. 

Цей метод забезпечує автоматичне припинення тренувального процесу у випадку, 

коли метрика якості на валідаційному наборі даних не покращується протягом 

заданої кількості послідовних епох. 

Багатокомпонентна структура функції втрат потребувала ретельного 

калібрування вагових коефіцієнтів для забезпечення оптимального балансу між 

різними аспектами навчання. На основі емпіричного аналізу та серії попередніх 

експериментів були встановлені значення: коефіцієнт для втрати локалізації λl=1.0, 

що підкреслює важливість точного визначення просторового розташування 

об'єктів; коефіцієнт для втрати класифікації λc =1.0, забезпечуючи рівнозначну 

важливість правильної ідентифікації типу дефекту; коефіцієнт для втрати 

впевненості λcf=0.5, що відображає дещо меншу вагу компоненти, відповідальної 

за оцінку ймовірності присутності об'єкта. 

Практична реалізація описаної методології навчання моделі згорткової 

нейронної мережі YOLOv12m-seg для аналізу термографічних зображень 

продемонструвала прийнятні результати, детальний аналіз яких представлено на 

рисунку 3.3.  

Отримані експериментальні дані підтверджують ефективність обраної 

конфігурації гіперпараметрів та застосованих регуляризаційних методів для 

специфічної задачі детекції дефектів на термограмах.  

Для оцінювання натренованої ЗНМ використовували метрики 

середньої точності (mAP) порогу 0,5 IoU, прецизійність та повноту для 

кожного класу окремо. 
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Рисунок 3.3 – Результати навчання моделі глибокого навчання YOLO: а) криві 

точності за тренувальним та валідаційним набором даних; б) криві втрат за 

тренувальним та валідаційним набором даних 
 

Результати застосування моделі згорткової нейронної мережі YOLOv12m-seg 

на тестовій вибірці наведені в табл. 3.2, 3.3.  
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Таблиця 3.2 – Результати застосування моделі згорткової нейронної мережі 

YOLOv12m-seg на тестовій вибірці зображень термограм з двохколірною 

палітрою. 

Клас дефекту  mAP0.5  Precision  Recall 

1 0.93  0.91  0.89 

2 0.90  0.88  0.86 

3 0.89  0.87  0.85 

Середнє 0.91  0.89 0.87 

 

Таблиця 3.3 – Результати моделі згорткової нейронної мережі YOLOv12m-

seg на тестовій вибірці зображень термограм з трьохколірною палітрою  

Клас дефекту mAP0.5 Precision Recall 

1 0.87 0.86 0.84 

2 0.90 0.88 0.86 

3 0.93 0.90 0.88 

Середнє значення 0.90 0.88 0.86 

 

У процесі навчання модель показала стабільне поліпшення показників 

точності та повноти, що свідчить про її високу продуктивність у реальних умовах. 

Загалом, дані графіки вказують на успішне навчання моделі з покращенням метрик 

продуктивності в міру проведення ітерацій навчання.  

 

3.3 Метод ансамблювання різнопалітрових термограм та RGB зображень для 

виявлення дефектів фотоелектричних модулів 

 

В задачах аналізу термограм сонячних панелей важливо забезпечити високу 

точність виявлення різних типів дефектів і особливо виявлення незначних дефектів 

частини фотоелектричного елемента, при яких можливий локальний перегрів і 

загорання панелі при не спрацюванні байпасного діода. 
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В ході дослідження ефективності виявлення невеликих за розміром дефектів 

було встановлено, що їх виявлення залежить від застосованої колірної палітри, від 

налаштування насиченості, температурного діапазону чутливості. При цьому, не 

коректні налаштування можуть призвести до розширення розмірів відносно 

великих дефектів, що маскує невеликі дефекти, які за розміром менше 

фотоелектричного елемента. 

За результатами порівняльного аналізу оцінок метрик середньої точності 

(mAP) для різних типів моделей дефектів і для різних типів палітри термограм, що 

розглянуто у попередній главі, можна відзначити, що: 

для 1 класу дефектів робота ЗНМ на тестовій вибірці зображень термограм 

двоколірної палітри більш ефективніша за триколірні; 

для 2 класу дефектів робота ЗНМ на тестовій вибірці зображень термограм з 

двоколірною палітрою не відрізняється за ефективністю за триколірні палітри; 

для 3 класу дефектів (менші за розмірами за окремі елементи) робота ЗНМ на 

тестовій вибірці зображень термограм з двоколірною палітрою менш ефективніша 

за триколірні палітри. 

Враховуючи зазначене, встановлено особливість одночасного детектування 

різних за розмірами дефектів фотоелектричних модулів, суть якої полягає в тому, 

що ефективність виявлення залежить від застосування типу колірних палітр 

термограм. 

Виходячи з чого, висунуто припущення про доцільність об'єднання 

результатів роботи моделей з 2 і 3 колірною палітрою, в основі чого лежить 

принцип оптимізації динамічного діапазону детектора тепловізора, що забезпечить 

виявлення одночасно різного розміру об'єктів. 

При застосуванні триколірної палітри з вузьким температурним інтервалом 

35-50 °C досягається підвищена температурна роздільна здатність системи, 

оскільки квантування 8-бітного АЦП розподіляється на 15 °C при вузькому 

діапазоні замість 35 °C при широкому двоколірної палітри, що забезпечує кращу 

чутливість. Збільшена насиченість кольорових каналів RGB підсилює градієнт 

функції передачі в області малих температурних аномалій, дозволяючи 
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детектувати локальні максимуми з мінімальною площею перетину в декілька 

пікселів. Натомість двоколірна палітра з широким динамічним діапазоном 25-60 °C 

оптимізована для виявлення макроскопічних термічних аномалій, де важливою є 

збереження топологічної цілісності великих об'єктів, наприклад рідка ФЕМСЕ, без 

насичення високотемпературних областей. 

Моделі згорткової нейронної мережі YOLOv12m-seg через використання 

різних кольорових палітр (двоколірні та триколірні термограми) продемонстрували 

різну ефективність у виявленні окремих типів дефектів. Найбільш ефективною є 

модель опрацювання триколірних термограм типу «гарячий червоний». Модель 

ефективно виявляє найменші дефекти ФЕМСЕ, а саме поодинокі фотоелектричні 

комірки. Для реалізації цього необхідно збільшувати насиченість червоного 

зображення, що у свою чергу призводить до розширення розмірів великих дефектів 

або злиття групи малих дефектів в єдиний локус, рис. 3.4 (фото зроблено автором 

на сонячній електростанції) [57]. 
 

       
                  а)                                            б)                                         в) 

Рисунок 3.4 – Регулювання насиченості червоного кольору термограми: а) висока 

насиченість червоного із забезпеченням виявлення малих дефектів; б) низька 

насиченість червоного кольору; в) біло-чорна термограма для виявлення великих 

дефектів 

 

На рис. 3.4, а) при великій насиченості червоного зверху і знизу термограми 

виявлено червоні ділянки. Причиною появи верхньої ділянки є неправильний 

ракурс зйомки, відблиск від рамки ФЕМСЕ. Реальна температура ділянки менше 

80°С, байпасний діод не має підвищеної температури, а значить не спрацював. При 

правильному орієнтуванні камери ділянка не буде виділятись червоним. Верхня 
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ділянка не є пожежонебезпечною. Причиною перегріву нижнього рядка є затінення 

рослинністю. Байпасний діод нижнього рядка спрацював, що захистило рядок від 

перегріву і температура його менше 80°С. Нижня ділянка не є пожежонебезпечною. 

Середній рядок фотоелементів також частково червоний, що може 

трактуватись як дефекти декількох фотоелементів і можна допустити, що 

байпасний діод спрацював, а значить немає пожежонебезпечного режиму. Проте 

при детальній перевірці встановлено, що діод середнього рядка не спрацював, а 

причиною червоного зображення середнього рядка є перенасиченість колірної 

палітри червоного і як наслідок розширення червоного і часткова засвітка 

середнього рядка. 

Разом з тим, велика насиченість дозволила виявити малу за розміром 

дефектну ділянку одного фотоелемента з температурою більше 200°С а розміром 

менше розміру елемента ФЕМСЕ. Саме такий вид дефектів є пожежонебезпечним, 

оскільки не викликає спрацювання байпасного діода. 

При малонасиченому налаштуванні червоного кольору, рис. 3.4 б) виявлено 

хибний дефект верхнього рядка модуля через відблиск і дефект нижнього рядка 

фотомодуля через затінення рослинністю. Гарячої точки середнього рядка не 

виявлено. Двоколірна модель «гарячий чорний» також ефективно забезпечує 

виявлення відносно великорозмірних дефектів типу дефектного фотоелемента, 

рядка або цілого ФЕМСЕ, рис. 3.4 в). 

Отже, важливо поєднувати виявлення дефектів одного або декількох 

фотоелементів або їх цілого рядка або всього ФЕМСЕ на двоколірній чорно-білій 

термограмі з виявленням дефектів, що становлять частину фотоелемента при 

більшій насиченості червоного на триколірній термограмі. Зазначене актуалізує 

процес ансамблювання термограм з різною палітрою кольорів. 

Розглянемо алгоритм ансамблювання різнопалітрових термограм та RGB 

зображень для виявлення дефектів фотоелектричних модулів з використанням 

ЗНМ. Традиційні підходи до термографічного моніторингу ФЕМСЕ 

використовують єдину термограму з фіксованим температурним діапазоном, що 

призводить до компромісу між чутливістю виявлення малих дефектів та 
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охопленням великих температурних аномалій. Для подолання цього обмеження 

запропоновано двоетапне ансамблювання термограм: 

- І етап мультимодельного ансамблювання термограм; 

- ІІ етап крос-модальної інтеграції даних. 

Розглянемо І етап, який базується на одночасному використанні двох 

термограм з різними характеристиками: 

M3 – високочутлива термограма з триколірною палітрою та вузьким 

динамічним діапазоном 15°C, оптимізована для виявлення малих локальних 

дефектів; 

M2 – стандартна термограма з широким динамічним діапазоном 35°C, 

призначена для реєстрації великих температурних аномалій. 

Обидві термограми формуються тепловізійною камерою і обробляються 

незалежно із застосуванням селективної фільтрації за критерієм відносної площі 

дефекту. Кожна термограма обробляється відповідною моделлю ЗНМ на основі 

моделі згорткової нейронної мережі YOLOv12m-seg для виявлення дефектів. 

Подібний підхід використовується в дослідженні [8], де YOLOv5 застосовується 

для виявлення дефектів на фотогальванічних модулях. 

Проблема полягає в тому, що жодна з моделей не може одночасно 

забезпечити високу точність для обох типів дефектів. Тому метою є об'єднання 

прогнозів обох моделей для досягнення оптимального результату. 

Розробимо математичну модель класифікації дефектів. Нехай M3 та M2 

термограми відповідних типів, отримані для одного фотоелектричного модуля. 

Введемо позначення: 

𝑁 – кількість фотоелектричних елементів у модулі (𝑁=60); 𝐷𝑖 – множина 

дефектів, виявлених на i-й термограмі; 𝑅𝑑 – відносна площа дефекту d у порівнянні 

з площею одного фотоелемента; GSD – просторова роздільна здатність зображення 

(Ground Sample Distance), м/піксель; 𝑆𝑑𝑒𝑓 – площа виявленого дефекту, м²; 𝑆𝑐𝑒𝑙𝑙 – 

площа одного фотоелектричного елемента, м²; 

𝑆𝑐𝑒𝑙𝑙  =  𝑆𝑚𝑜𝑑
𝑁

      (3.15) 
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 𝑆𝑚𝑜𝑑 – загальна площа фотоелектричного модуля, м². 

Алгоритм обробки термограми M3: 

Крок 1. Сегментація фотоелектричного модуля на термограмі М3: 

𝑆(𝑀3) =  YOLOv12m_seg. DetectModule(𝑀3) 

Крок 2. Розрахунок площі одного фотоелектричного елемента (.3.15). 

Крок 3. Виявлення множини дефектів на термограмі 𝑀3:  

𝐷𝑖(𝑀3)  =  YOLOv12m_seg. DetectDefects(𝑀3) 

Крок 4. Обчислення відносної площі кожного дефекту: 

∀ 𝑑 ∈  𝐷(𝑀3): 𝑅𝑑  =  𝑆𝑑𝑒𝑓

𝑆𝑐𝑒𝑙𝑙
,     (3.16) 

Отримаєм критерій класифікації для малорозмірних дефектів типу 

пожежонебезпечних «гарячих точок»:  

𝑆𝑑𝑒𝑓  <  𝑆𝑐𝑒𝑙𝑙,      (3.17) 

критерій класифікації для великих дефектів: 

𝑆𝑑𝑒𝑓  ≥  𝑆𝑐𝑒𝑙𝑙.      (3.18) 

Крок 5. Селективна фільтрація малих дефектів:  

𝐷𝑠𝑚𝑎𝑙𝑙 =  { 𝑑 ∈  𝐷(𝑀3) │ 𝑅𝑑(𝑀3)  <  1.0 }      (3.19) 

Умова (3.19) забезпечує включення до результуючої множини 𝐷 тільки тих 

дефектів, площа яких не перевищує площу одного фотоелектричного елемента. 

Такі дефекти характеризуються локальними пожежонебезпечними 

температурними аномаліями та ефективно виявляються на термограмі M3 завдяки 

її високій чутливості в вузькому діапазоні температур. 

Аналогічно до обробки термограми M3, для термограми M2 виконуються  

кроки 1-5, але умова відбору дефектів інша: 

Крок 6. Селективна фільтрація великих дефектів:  

𝐷𝑙𝑎𝑟𝑔𝑒 =  { 𝑑 ∈  𝐷(𝑀2) │ 𝑅𝑑(𝑀2)  ≥  1.0 }   (3.20) 

Умова (3.20) забезпечує включення до результуючої множини 𝐷 тільки тих 

дефектів, площа яких дорівнює або перевищує площу одного фотоелектричного 

елемента, що не є пожежонебезпечним режимом роботи ФЕМСЕ. Широкий 

температурний діапазон термограми M2 дозволяє надійно реєструвати такі великі 
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дефекти без насичення. Отже, проведено розмежування детекцій за відносною 

площею з маршрутизацією дефектів відповідно до моделей М2 і М3 відповідно 

критеріям (3.19), (3.20). 

Перед ансамблюванням результатів застосовується алгоритм Mask-NMS для 

видалення дублюючих детекцій сегментованих контурів дефектів, залишаючи 

лише найбільш значущі. Це особливо корисно при обробці результатів сегментації 

об'єктів неправильної форми, де може бути кілька перекривних контурів дефектів, 

що позначають один і той самий дефект [108]. 

Застосування Mask-NMS з диференційованими порогами і параметрами: 

M3 (малі дефекти): IoU=0.4 - менший поріг для збереження близьких малих 

дефектів, M2 (великі дефекти): IoU=0.5 – стандартний поріг для усунення 

перекриттів. Confidence: 0.25 – єдиний поріг впевненості для обох моделей. 

Використання різних порогів Mask_IoU=0.4M3 та Mask_IoU=0.5M2 обумовлено 

специфікою детекції: малі дефекти вимагають більш консервативного підходу до 

усунення перекриттів контурів, тоді як для великих дефектів допустимі стандартні 

пороги. Поріг Mask_IoU обчислюється як відношення площі перетину 

полігональних контурів дефектів до площі їх об'єднання. Це запобігає придушенню 

малих «гарячих точок» поблизу великих перегрітих ділянок. 

Після застосування Mask-NMS результати з обох термограм об'єднуються з 

використанням методу селективного комбінування, що враховує специфіку 

кожного типу детекції. 

Селективне комбінування – це метод ансамблювання, який поєднує прогнози 

кількох моделей шляхом відбору найкращих детекцій з кожної моделі на основі їх 

спеціалізації. Основна ідея полягає в тому, щоб зробити фінальний прогноз більш 

точним, об'єднуючи переваги різних моделей. 

З попередніх викладок зроблено висновок, що модель М2, навчена на 

двоколірних термограмах, краще виявляє тип 1 дефектів, середнє значення метрики 

становить mAP(M2)=0.93. Модель М3, навчена на трьох кольорових термограмах, 

краще виявляє тип 3 дефектів, середнє значення метрики становить також 

mAP(M3)=0.93. 
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В результаті селективного комбінування формується фінальна множина 

виявлених дефектів: 

𝐷𝑓𝑖𝑛𝑎𝑙 = 𝐷𝑠𝑚𝑎𝑙𝑙  ∪  𝐷𝑙𝑎𝑟𝑔𝑒    (3.21) 

При цьому забезпечується відсутність перетину множин: 𝐷𝑀3 ∩  𝐷𝑀2 =  ∅, 

оскільки дефекти класифікуються за взаємовиключними критеріями відносної 

площі, а Mask-NMS усуває дублікати в межах кожної категорії. На основі 𝐷𝑓𝑖𝑛𝑎𝑙 

формується контурна карта сегментованих дефектів з прозорими червоними 

контурами, що окреслюють виявлені дефекти. 

Для кожного виявленого дефекту здійснюється його контурне виділення 

червоною лінією. Це забезпечує чітку візуалізацію локалізації дефектів на 

відповідних термограмах із зазначенням їх значимості та полегшує подальший 

аналіз експертом. 

Переваги мультимодельного ансамблювання термограм з Mask-NMS та 

селективним комбінуванням: 

1. Оптимізована чутливість: термограма M3 з вузьким діапазоном 15°C 

забезпечує максимальну чутливість до малих температурних аномалій порядку 0.1-

0.5°C. 

2. Широке покриття: термограма M2 з діапазоном 35°C охоплює весь 

спектр можливих дефектів від локальних перегрівів до значних дефектів. 

3. Селективна обробка: кожна термограма обробляється спеціалізованою 

моделлю, оптимізованою для відповідного класу дефектів, що підвищує точність 

класифікації. 

4. Усунення дублікатів: алгоритм Mask-NMS забезпечує унікальність 

детекцій та зменшує помилкові спрацювання. 

5. Селективне комбінування: метод селективного комбінування 

оптимально поєднує сильні сторони кожної термограми з урахуванням їх 

специфіки. 

6. Зменшення помилкових спрацювань: малі температурні флуктуації та 

шуми не впливають на виявлення великих дефектів завдяки роздільній обробці та 

фільтрації. 
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7. Комплексність аналізу: метод забезпечує повне покриття всього 

діапазону можливих дефектів без втрати інформації. 

Експериментальна перевірка методу 

Для верифікації ефективності запропонованого методу з Mask-NMS та 

селективним комбінуванням проведено експериментальні дослідження на наборі з 

40 пар термограм фотоелектричних модулів з різними типами дефектів. 

Результати показали покращення результатів у порівнянні з базовим 

методом: 

збільшилась точність виявлення малих дефектів на M3 на 2.6 %; 

зменшилось помилкових спрацювань порівняно з одиночною термографією. 

Запропонований алгоритм селективної обробки різнопалітрових термограм з 

інтегрованими алгоритмами Mask-NMS та селективного комбінування забезпечує 

підвищення якості виявлення дефектів фотоелектричних модулів та створює 

надійну основу для розробки автоматизованих систем моніторингу сонячних 

електростанцій. 

ІІ етап крос-модальної інтеграції даних. 

На об'єднаній термограмі відображаються лише прозорі червоні контури 

сегментованих дефектів, що окреслюють виявлені дефекти. Внутрішня, зовнішня 

область контурів залишається незаповненою, забезпечуючи прозорість. 

Паралельно з термографічною зйомкою здійснюється фотографування 

сонячної панелі RGB камерою. Для об'єднання термографічних та RGB даних у 

червоному каналі (R) RGB зображення дані замінюються на об'єднану термограму 

з червоними рамками дефектів. Це призводить до створення зображення, де обриси 

дефектів відображаються червоними рамками, а сама панель і суть дефекту у 

відтінках зеленого та синього. Такий підхід до злиття термографічних та видимих 

зображень застосовується для покращення автоматизованого виявлення тріщин 

об'єктів технічної інфраструктури [59; 81]. 

В блоці датчиків H20T БПЛА DJI Matrice 300 RTK камери відкалібровані, 

геометрично узгоджені, виробник гарантує мінімальний паралакс між камерами і 

програми SDK можуть автоматично поєднувати теплові та видимі дані. Тому 
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пропонується спосіб злиття даних – заміни даних червоного каналу R у RGB 

зображенні на червоні контури сегментованих дефектів. Це створює композицію, 

де інформація про тепло проявляється як червоні контури, контрастуючи з 

вихідними зеленим та синім відеоканалами. 

Сформуємо нове зображення 𝐼𝑓𝑢𝑠𝑖𝑜𝑛(𝑥, 𝑦) з каналами (𝐵, 𝐺, 𝑅): 

𝐼𝑓𝑢𝑠𝑖𝑜𝑛, 𝐵(𝑥, 𝑦) =  𝐼𝑅𝐺𝐵, 𝐵(𝑥, 𝑦) – синій канал без змін, 

𝐼𝑓𝑢𝑠𝑖𝑜𝑛, 𝐺(𝑥, 𝑦) =  𝐼𝑅𝐺𝐵, 𝐺(𝑥, 𝑦) – зелений канал без змін, 

𝐼𝑓𝑢𝑠𝑖𝑜𝑛, 𝑅(𝑥, 𝑦)  =  𝐹𝑇(𝑥, 𝑦), де 𝐹𝑇 – обране представлення термограми. 

Здійснена заміна даних 𝑅 каналу на контури дефектів 𝐹𝑇(𝑥, 𝑦) – це бінарне 

зображення з контурами дефектів. Тоді на виході ми отримаємо здебільшого 

незмінене фото панелі, але червоні контури накладені поверх місць дефектів. Цей 

варіант зручний для візуалізації і для навчання моделі, оскільки модель явно бачить 

окреслені області дефектів. 

Отримане зображення містить 3 канали і може бути передане в стандартну 

модель для обробки, але з додатковою закодованою інформацією про дефекти, 

виявлені тепловізором.  

Така мультиспектральна композиція створює синьо-зелене зображення 

панелі з червоними лініями контурів дефектів, що дозволяє моделі машинного 

навчання одночасно аналізувати візуальні характеристики панелі та точне 

розташування теплових аномалій.  

Двоетапне ансамблювання моделей глибокого навчання на основі аналізу 

окремо термограм і злиття їх з відеозображенням було визначено як доцільний 

підхід для виявлення дефектів на композиційному зображенні. 

Результати до та після ансамблювання наведено в табл. 3.4 [57]. 

Таблиця 3.4 – Порівняння результатів до та після ансамблювання моделей 

Клас моделі дефекту 
 

Метрика mAP0.5 до/після 
ансамблювання 

1 0,93/0,96 
2 0,90/0,90 
3 0,93/0,95 
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Застосування ансамблевого методу призвело до покращення показників для 

класів 1, 3 дефектів. Для дефекту класу «один рядок тепліший за інші рядки в 

модулі» значення показника mAP@0.5 збільшилось на 3 %, що свідчить про 

підвищення точності виявлення цілих перегрітих рядків ФЕМСЕ. 

Для дефекту «поодинокі фотоелектричні елементи тепліші» (частина 

поодиноких фотоелектричних елементів тепліша) значення показника mAP@0.5 

збільшилось на 2 %, що свідчить про підвищення точності виявлення «гарячих 

точок». Переваги такого підходу це візуалізація дефекту (забруднення), рис. 3.5 

(фото зроблено автором на сонячній електростанції) [57]. 
 

           
Рисунок 3.5 – Результат злиття термографічних та RGB зображень із 

заміною R каналу на червоні контури дефектів термограм 

 

Застосування розробленого методу ансамблювання на бортовому комп’ютері 

NVIDIA Jetson AGX Orin у складі БПЛА DJI Matrice 300 RTK з камерою Zenmuse 

H20T забезпечує підвищення ефективності обробки та передачі даних. 

У процесі роботи три окремі зображення RGB-кадр і дві термограми (M3, 

M2) об’єднуються в єдине композитне RGB-зображення, на яке накладаються 

червоні контури дефектів, отримані з термографічних каналів. При цьому 

інформація про дефекти вбудовується безпосередньо в червоний канал 

зображення, тому повні термограми не передаються. У результаті обсяг даних, що 

передаються через радіоканал, зменшується з 4,1 МБ (2,5 МБ RGB + 0,8 МБ M3 + 

0,8 МБ M2) до 2,8 МБ. Така економія (≈ 31,7 %) досягається завдяки тому, що до 

RGB-кадру додаються лише контури дефектів (≈ 0,25 МБ) і службові метадані (≈ 

0,03 МБ). Це скорочує час передачі через радіоканал 8 Мбіт/с з приблизно 4,1 с до 

2,8 с, що є визначальним фактором у зниженні загального часу обробки даних 
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одного ФЕМСЕ та становить близько 32 %. Таким чином, система забезпечує 

оперативну локалізацію та класифікацію дефектів фотоелектричних модулів у 

реальному часі навіть за обмеженої пропускної здатності радіоканалу. 

На рис 3.6 подано блок-схему методу ансамблювання різнопалітрових 

термограм та RGB зображень для виявлення дефектів фотоелектричних модулів з 

використанням моделі згорткової нейронної мережі YOLOv12m-seg. 

 
 

 Scell = Smod/N, Rd=Sdef/Scell 

Dfinal=Dsmall ∪ Dlarge 
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Рисунок 3.6 – Блок-схема методу ансамблювання різнопалітрових термограм та 

RGB зображень для виявлення дефектів фотоелектричних модулів з 

використанням моделі згорткової нейронної мережі YOLOv12m-seg 

 

Метод складається з двох етапів: 

І етап – мультимодельне ансамблювання термограм з використанням 

математичної моделі класифікації дефектів за відносною площею, селективної 

фільтрації та селективного комбінування результатів застосування моделі 

YOLOv12m-seg. Відповідають блоки з 1 по 11. 

ІІ етап – крос-модальна інтеграція даних шляхом заміни червоного каналу 

RGB зображення контурами сегментованих дефектів для створення 

композиційного термо-RGB зображення. 

Алгоритм реалізації запропонованого методу відповідно етапам такий: 
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І етап мультимодельного ансамблювання термограм: 

1. Програмна реалізація розробленого автоматичного налаштування 

кольорової палітри і температурного діапазону зображень камер на основі даних 

сенсорів температури і освітленості. Збір даних, отримання термограм з дво і 

триколірними палітрами ФЕМСЕ (М2, М3), отримання RGB зображення тієї ж 

панелі, блоки 1-3. 

2. Сегментація дефектів фотоелектричного модуля на різнопалітрових 

термограмах, блок 4, 5. 

3. Формування математичної моделі класифікації кожного дефекту за 

відносною його площею 𝑅𝑑  =  𝑆𝑑𝑒𝑓

𝑆𝑐𝑒𝑙𝑙
 у порівнянні з площею одного фотоелемента 

𝑆𝑐𝑒𝑙𝑙  =  𝑆𝑚𝑜𝑑
𝑁

 на термограмі модуля, блок 6. 

4. Селективна фільтрація дефектів за відносною площею щодо площі 

одного фотоелектричного елемента з маршрутизацією до підмоделі M3 триколірної 

термограми за критерієм класифікації для малорозмірних дефектів типу 

пожежонебезпечних «гарячих точок» 𝑆𝑑𝑒𝑓  <  𝑆𝑐𝑒𝑙𝑙 та підмоделі M2 двоколірної 

термограми за критерієм класифікації для великих дефектів 𝑆𝑑𝑒𝑓  ≥  𝑆𝑐𝑒𝑙𝑙, блок 7, 8. 

5. Застосування алгоритму Mask-NMS (Non-Maximum Suppression для 

полігональних контурів) для усунення дублювань дефектів кожної з підмоделей із 

порогами Mask_IoU_M3=0.4 та Mask_IoU_M2=0.5, що запобігає придушенню 

малих «гарячих точок» поблизу великих перегрітих ділянок, блок 9, 10. 

6. Застосування методу селективного комбінування об'єднання двох 

моделей згорткової нейронної мережі YOLOv12m-seg для дво і триколірних 

термограм шляхом простого об'єднання множин детекцій 𝐷𝑓𝑖𝑛𝑎𝑙 = 𝐷𝑠𝑚𝑎𝑙𝑙  ∪

 𝐷𝑙𝑎𝑟𝑔𝑒. Формується контурна карта сегментованих дефектів з прозорими 

червоними контурами, що окреслюють виявлені дефекти, блок 11. 

ІІ етап крос-модальної інтеграції даних: 

7. Уведення постобробки із заміною даних у червоному каналі RGB 

зображення на контури сегментованих дефектів термограм для створення 

композиційного термо-RGB зображення, блок 12. 
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8. Отримання синьо-зеленого зображення панелі з червоними лініями 

контурів дефектів 𝐼𝑓𝑢𝑠𝑖𝑜𝑛(𝑥, 𝑦) для їх візуального аналізу та прийняття рішень щодо 

обслуговування, блок 12. 

Поєднання детекції малих та великих дефектів за допомогою окремих 

моделей, фільтрація результатів та їх об'єднання забезпечують високу точність та 

надійність виявлення. 

Інтеграція з RGB зображеннями покращує сприйняття результатів 

оператором, що сприяє оптимізації процесів обслуговування та виявленню 

небезпечних у пожежному відношенні дефектів ФЕМСЕ. 

Удосконалено метод ансамблювання різнопалітрових термограм та RGB 

зображень для виявлення дефектів фотоелектричних модулів, який на першому 

етапі мультимодельного ансамблювання термограм відрізняється розробкою 

математичної моделі класифікації дефектів за їх відносною площею щодо площі 

одного фотоелемента. Це покладено в основу селективної фільтрації детекцій 

окремо для двоколірних і триколірних термограм та подальшого селективного 

комбінування результатів сегментації, отриманих за допомогою моделі згорткової 

нейронної мережі YOLOv12m-seg що запобігає втраті пожежонебезпечних 

«гарячих точок» поблизу великих дефектів типу перегрітих рядків 

фотоелектричного модуля. На другому етапі крос-модальної інтеграції даних 

уведено постобробку із заміною даних у червоному каналі RGB зображення на 

контури сегментованих дефектів термограм для створення композиційного термо-

RGB зображення, що забезпечило релевантність передачі даних з БПЛА на наземну 

систему управління зі скороченням загального часу обробки даних з одного модуля 

на 32 %, а також підвищено середню точність виявлення пожежонебезпечних 

дефектів на 2-3%.  

Запропонований метод інтеграції термографічних зображень у різних 

палітрах з RGB зображеннями на основі моделей глибокого навчання дозволяє 

ефективно виявляти та візуалізувати дефекти сонячних панелей. 
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Поєднання детекції малих та великих дефектів за допомогою окремих 

моделей, фільтрація результатів та їх об'єднання забезпечують високу точність та 

надійність виявлення. 

Інтеграція з RGB зображеннями покращує сприйняття результатів 

оператором, що сприяє оптимізації процесів обслуговування та виявленню 

небезпечних у пожежному відношенні дефектів ФЕМСЕ. 

Застосування розробленого методу на бортовому обладнанні БПЛА 

забезпечує значне скорочення часу обробки та забезпечення розрізнення режимів 

роботи фотоелектричних модулів. 
 

3.4. Метод функціонування кіберфізичних систем моніторингу дефектів 

фотоелектричних модулів сонячних електростанцій 

 

КФС моніторингу дефектів ФЕМСЕ складаються з камер спостереження, 

GPS навігації і датчиків БПЛА, додаткового бортового комп’ютера з програмним 

забезпеченням на основі моделей згорткової нейронної мережі, ноутбука 

планування моніторингу, а також засобів доступу до інтернет ресурсів хмарного 

середовища, системи диспетчерського управління та збору даних результату 

моніторингу генерації електроенергії.  

Система забезпечує комплексний моніторинг з автоматизацією процесів від 

детекції дефектів до вироблення сигналу тривоги при виникненні 

пожежонебезпечного режиму, що підвищує ефективність діагностики порівняно з 

традиційними методами візуального огляду. 

Основними функціями КФС є [54; 117]: 

моніторинг електричних параметрів ФЕМСЕ та візуалізація її стану; 

отримання аналітики для своєчасного виявлення відхилень у роботі; 

підтримка обробки JSON-даних від бортового комп’ютера Nvidia Jetson AGX 

Orin 32GB; 

передача результатів аналізу застосування ЗНМ у реальному часі через 

протокол MQTT; 
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інтеграція з хмарними сервісами через Azure IoT Hub для зберігання та 

обробки даних, а також підтримка протоколу ZeroMQ; 

обробка геопросторових даних від системи GPS RTK на борту БПЛА; 

розрізнення режимів функціонування ФЕМСЕ. 

Опис функціонування КФС за вказаним переліком функцій розглянуто у 

розділі 3 за виключенням важливої функції моніторингу ФЕМСЕ як розрізнення 

пожежонебезпечного режиму функціонування.  

При розробці архітектури КФС моніторингу дефектів ФЕМСЕ на основі 

концепції периферійно-хмарної обробки даних, що подано у розділі 2, виділено такі 

основні складові КФС: хмарна платформа, БПЛА з бортовою апаратурою, наземна 

апаратура управління БПЛА, системи диспетчерського управління та збору даних 

SCADA.  

Функціонування і взаємозв’язок перших двох складових описано в главах 2.1, 

3.1, 3.2. Для розробки методу далі розглянем детальніше взаємозв’язок наземної 

апаратури управління БПЛА з SCADA, що реалізує безпосередньо розрізнення 

режимів функціонування модулів.  

За результатами аналізу функціонування ФЕМСЕ, можливостей моніторингу 

із застосуванням оптичної і термографічної зйомки встановлено нову ознаку 

моніторингу, а саме: комбінації даних щодо наявності дефектів у рядках 

фотоелектричних елементів модуля і даних щодо спрацювання байпасних діодів 

відповідних рядків однозначно визначають режим пожежної небезпеки чи 

спрацювання захисту модуля. 

Отже важливим є автоматичне розпізнавання не тільки дефектів, а й режимів 

роботи ФЕМСЕ, що доцільно із застосуванням математичного апарату алгебри 

логіки, що є основою роботи програмних засобів SCADA. Інтеграція SCADA у 

КФС моніторингу ФЕМСЕ забезпечує переваги: 

зменшення часу на виявлення дефектів; 

зниження витрат на технічне обслуговування ФЕМСЕ; 

підвищення надійності системи моніторингу, зниження ймовірності хибної 

тривоги; 
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комплексний аналіз різних типів даних із застосуванням логічних операцій 

для виявлення пожежонебезпечних режимів; 

можливість інтеграції з іншими автоматизованими системами; 

своєчасне виявлення пожежонебезпечних режимів.  

Запропонована інтеграція у КФС моніторингу ФЕМСЕ програмно-

апаратного продукту SCADA потребує уточнення даних, які отримують від 

наземного комп’ютера управління БПЛА. 

 Не всі дефекти є пожежонебезпечними. Визначимо ознаки, за яких можливо 

розпізнати такі дефекти. Для цього складемо таблицю істинності сукупності 

важливих ознак моніторингу режимів функціонування ФЕМСЕ. Застосуємо 

алгебру логіки для її заповнення і розрахунку функції істинності режимів роботи 

фотоелектричного модуля Y. Булевими змінними позначатимемо: 

Хі – виявлення дефектів у і-му рядку термограми модуля; 

Х1і – підвищена температура байпасного діода і-го рядка; 

Х2і – спрацювання датчика виявлення пожежі і-го рядка модуля. 

Дані змінних Хі надходять від системи SCADA до ноутбука управління 

БПЛА. Розглянемо алгоритм визначення належності дефектів до відповідних 

рядків елементів фотоелектричного модуля. 

При розробці алгоритму приймемо таке обмеження. Розглянемо ФЕМСЕ, які 

обладнані байпасними діодами, кожен з яких захищає один рядок фотоелементів. 

Рядок складається з двох паралельно розміщених підрядків фотоелементів.  

При повністю дефектному одному або більше фотоелементі спрацьовує 

захисний байпасний діод, зменшуючи температуру нагріву дефектного елементу, 

але при цьому піднімається температура інших елементів рядка, яка теж не 

перевищує пожежонебезпечний поріг. При частковому дефекті фотоелемента 

байпасний діод може не спрацювати, що є ознакою пожежонебезпечного режиму. 

Для автоматизованого визначення належності дефектів до конкретних рядків 

ФЕМСЕ на наземному комп’ютері управління БПЛА застосовується алгоритм.  

1. На вхід подається вже вирівняне композиційне термо-RGB зображення 

модуля, де контури дефектів нанесені червоним кольором. Вхідні дані: I(x,y) – 
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композиційне термо-RGB зображення модуля розміру W×H пікселів; R(x,y) – 

червоний канал з контурами дефектів; Nr = 3 – кількість рядків модуля. 

2. Зображення поділяється на три рівні рядки і=1-3, кожен з яких шунтується 

одним байпасним діодом.  

3. Для кожного рядка перевіряється наявність хоча б одного червоного 

пікселя. Якщо піксель знайдено, рядок відразу позначається як такий, що містить 

дефект Хі, і подальша перевірка цього рядка не виконується.  

4. Аналіз триває до моменту, коли буде визначено, що всі рядки мають 

дефекти або будуть переглянуті всі червоні пікселі контурів дефектів.  

4. У результаті формується висновок щодо належності дефектів у кожному з 

рядків ФЕМСЕ.  

Обчислення функції істинності Y здійснюється на комп’ютері наземної 

системи управління, табл. 3.5 [115]. 

Якщо є дефект і байпасний діод справний й спрацював, то весь рядок буде 

тепліший за інші рядки, що пояснюється додатковим розсіюванням тепла 

елементами рядка, а не перетворенням її у електричну енергію.  

Якщо байпасний діод несправний, короткозамкнутий, то рядок буде 

теплішим незалежно є дефектні елементи чи ні.  

Якщо немає таких елементів, то рядок буде рівномірно нагрітий. Якщо є 

дефектні елементи то вони будуть теплішими на фоні інших.  

Отже рівномірний нагрів рядка є ознакою короткозамкнутості байпасного 

діода, рис. 3.7 (фото зроблено автором на сонячній електростанції).  

    
Рисунок  3.7 – Зображення рівномірно нагрітого рядка і коробки з байпасними 

діодами, зроблене телефоном DOOGEE V20Pro на IR та RGB камеру і 

тепловізором MPM-625 
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Таблиця 3.5 – Таблиця істинності сукупності ознак режимів функціонування 

ФЕМСЕ 
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Режим роботи модуля 

1 1 0 0 0 0 0 1 пожежонебезпечний 1 
2 1 0 0 1 0 0 0 блокування діодом 1 
3 0 1 0 0 0 0 1 пожежонебезпечний 2 
4 0 1 0 0 1 0 0 блокування діодом 2 
5 0 0 1 0 0 0 1 пожежонебезпечний 3 
6 0 0 1 0 0 1 0 блокування діодом 3 
7 1 1 0 0 0 0 1 пожежонебезпечний 1, 2 
8 1 1 0 0 1 0 1 пожежонебезпечний 1 
9 1 1 0 1 0 0 1 пожежонебезпечний 2 
10 1 1 0 1 1 0 0 блокування діодами 1, 2 
11 1 0 1 0 0 0 1 пожежонебезпечний 1,3 
12 1 0 1 0 0 1 1 пожежонебезпечний 1 
13 1 0 1 1 0 0 1 пожежонебезпечний 3 
14 1 0 1 1 0 1 0 блокування діодами 1, 3 
15 0 1 1 0 0 0 1 пожежонебезпечний 2, 3 
16 0 1 1 0 0 1 1 пожежонебезпечний 2 
17 0 1 1 0 1 0 1 пожежонебезпечний 3 
18 0 1 1 0 1 1 0 блокування діодами 2, 3 
19 1 1 1 0 0 0 1 пожежонебезпечний 1,2, 3 
20 1 1 1 1 1 1 0 блокування діодами 1, 2, 3 
21 1 1 1 0 0 1 1 пожежонебезпечний 1,2 
22 1 1 1 0 1 0 1 пожежонебезпечний 1,3 
23 1 1 1 1 0 0 1 пожежонебезпечний 2,3 
24 1 1 1 0 1 1 1 пожежонебезпечний 1 
25 1 1 1 1 1 0 1 пожежонебезпечний 3 
26 1 1 1 1 0 1 1 пожежонебезпечний 2 

 

У роботі розглянуто не всі 64 теоретично можливі двійкові комбінації 

вхідних змінних, а лише підмножину, що відповідає фізично реалізованим 

режимам роботи ФЕМСЕ. Комбінації, за яких фіксується підвищена температура 

байпасного діода за відсутності перегріву відповідного рядка, не розглядаються, 

оскільки такі стани суперечать фізичному принципу роботи модуля і не можуть 

виникати в реальних умовах експлуатації. Крім того, з аналізу виключено 

нормальний режим роботи без дефектів, який не становить практичного інтересу в 



 
 

121 
 
межах задачі детекції пожежонебезпечних станів. У результаті розглянуто 26 

комбінацій, що є достатніми для опису всіх аварійних і пожежонебезпечних 

режимів роботи модуля. Нерівномірний нагрів рядка фотоелектричних елементів є 

ознакою наявності гарячої точки і спрацювання байпасного діода, рис. 3.8 (фото 

зроблено автором на сонячній електростанції). 

   
Рисунок  3.8 – Зображення не рівномірно нагрітого рядка внизу і нагрітої 

розподільної коробки з байпасними діодами праворуч по середині біля рамки 

модуля зроблене тепловізором MPM-625 

 

На рис. 3.7 чітко виділяється гаряча точка праворуч на нерівномірно 

нагрітому рядку фотоелементів, що очевидно стала причиною спрацювання 

байпасного діода. Нагрів розподільної коробки, яка розміщена з тильної сторони 

панелі, спричинений діодом і виявлений тепловізором на знімку лицевої сторони 

панелі (термографічна пляма на зображенні обведена лінією). Зображення на рис. 

3.7, 3.8 зроблені на сонячній електростанції в Хмельницькій області.  

Отже можна вказати на ще одну ознаку спрацювання або закорочення 

байпасного діода, а саме: термографічне виявлення на панелі з лицьової сторони в 

місці кріплення розподільної коробки гарячої точки, причиною чого є нагрів діодів. 

Проте розрізнити який саме діод спрацював у такому випадку не можливо, що 

потребує додатково встановлення датчиків безпосередньо у розподільну коробку і 

підключення їх до системи типу SCADA. 

 Якщо діод несправний і його електричне коло розірвано, то рядок або буде 

нормально працювати, якщо немає дефектних елементів, а якщо є то весь рядок 

буде найгарячішим і особливо дефектні елементи. Встановити тепловізором обрив 
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діода можливо лише при штучному уведенні несправностей в рядок фотоелементів. 

На основі таблиці істинності для функції Y=1 (тобто виявлено пожежонебезпечний 

режим) складено диз'юнктивну нормальну форму (ДНФ) виявлення 

пожежонебезпечного режиму функціонування ФЕМСЕ [56; 115].  

Повна (канонічна) ДНФ має вид: 

Y = X̅1 X̅2 X3 X̅11 X̅12 X̅13 + X̅1 X̅2 X3 X̅11 X̅12 X13 + X̅1 X2 X̅3 X̅11 X̅12 X̅13 + X̅1 

X2 X̅3 X̅11 X12 X̅13 + X̅1 X2 X3 X̅11 X̅12 X̅13 + X̅1 X2 X3 X̅11 X̅12 X13 +  

X̅1 X2 X3 X̅11 X12 X̅13 + X̅1 X2 X3 X̅11 X12 X13 + X1 X̅2 X̅3 X̅11 X̅12 X̅13 +  

X1 X̅2 X̅3 X11 X̅12 X̅13 + X1 X̅2 X3 X̅11 X̅12 X̅13 + X1 X̅2 X3 X̅11 X̅12 X13 +  

X1 X̅2 X3 X11 X̅12 X̅13 + X1 X̅2 X3 X11 X̅12 X13 + X1 X2 X̅3 X̅11 X̅12 X̅13 + 

 X1 X2 X̅3 X̅11 X12 X̅13 + X1 X2 X̅3 X11 X̅12 X̅13 + X1 X2 X̅3 X11 X12 X̅13 +  

X1 X2 X3 X̅11 X̅12 X̅13 + X1 X2 X3 X̅11 X̅12 X13 + X1 X2 X3 X̅11 X12 X̅13 + 

 X1 X2 X3 X̅11 X12 X13 + X1 X2 X3 X11 X̅12 X̅13 + X1 X2 X3 X11 X̅12 X13 +  

X1 X2 X3 X11 X12 X̅13 + X1 X2 X3 X11 X12 X13.               

Відповідно до алгебри логіки, ДНФ відображає функцію Y як диз’юнкцію 

кон’юнкцій, які відповідають рядкам таблиці істинності, де функція приймає 

значення 1. Кожна кон’юнкція це логічний добуток змінних у прямій або інверсній 

формі. Фізично це означає: функція видає пожежонебезпечний режим тоді й лише 

тоді, коли в і-му рядку фотоелектричного модуля виявлено дефект (гаряча точка), 

але відповідний байпасний діод не спрацював (не нагрівся). Тобто логічний вираз 

описує умови відсутності захисту при наявності дефекту. Після спрощення 

отримаєм мінімальну ДНФ [115]:  

𝑌 =  𝑋1 𝑋11 +  𝑋2 𝑋12 +  𝑋3 𝑋13.    (3.22) 

Мінімізація функції усуває надлишкові мінтерми та зводить вираз до трьох 

базових кон’юнкцій. Дану функцію доповнено змінними 𝑋21, 𝑋22, 𝑋23, що 

характеризують спрацювання датчиків виявлення пожежі у 1, 2, 3 рядках 

фотоелектричних елементів ФЕМСЕ. Датчики, наприклад, можуть бути 

виготовлені у вигляді сенсорних ліній і закріплені на ФЕМСЕ, при цьому дані від 

датчиків надходять до комп’ютера системи SCADA. Тоді функцію істинності (3.6) 

перепишем: 
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𝑌 =  𝑋1 𝑋11 +  𝑋2 𝑋12 +  𝑋3 𝑋13 +  𝑋21 +  𝑋22 +  𝑋23,  (3.23) 

де 𝑌 – функція істинності режиму роботи фотоелектричного модуля; 𝑋1, 𝑋2, 𝑋3 – 

виявлено гарячу точку у 1, 2, 3 у відповідному рядку фотоелектричних елементів 

модуля; 𝑋11, 𝑋12, 𝑋13 – виявлено підвищену температуру байпасного діода, який 

шунтує відповідний 1, 2, 3 рядок фотоелектричних елементів модуля; 𝑋21, 𝑋22, 

𝑋23 – спрацювання датчиків виявлення пожежі відповідно 1, 2, 3 рядка 

фотоелектричних елементів модуля.  

У загальному виді вираз (3.7) представимо у вигляді суми: 

𝑌 = ∑(𝑋𝑖𝑋̅1𝑖 + 𝑋2𝑖).                                     (3.24)
3

𝑖=1

 

З отриманого виразу функції істинності 𝑌 випливає, що система переходить 

у пожежонебезпечний режим тоді й лише тоді, коли хоча б в одному рядку 

фотоелектричних елементів модуля виконується умова: наявність дефекту (𝑋𝑖=1) і 

відсутність спрацювання захисту (𝑋̅1𝑖=1) або спрацювання датчика виявлення 

пожежі (𝑋2𝑖). Отже, результат відображає логічну диз’юнкцію станів відсутності 

захисту при наявності дефекту або загорання панелі.  

Для отримання даних від датчиків, які розміщуються на ФЕМСЕ, у КФС 

інтегровано систему SCADA. Для реалізації оперативного встановлення режиму 

функціонування ФЕМСЕ, що по суті є найважливішим практичним завданням 

неперервного моніторингу ФЕМСЕ, розроблено систему автоматичного 

оповіщення про появу підвищеної і пожежонебезпечної температури на поверхні 

фотоелектричного модуля сонячної електростанції. В основу покладено 

моніторинг мікроконтролером зміни температури байпасних діодів, що вказує на 

появу дефекту і підвищеної температури ФЕМСЕ і опору сенсорної лінії, якою 

покрита внутрішня поверхня ФЕМСЕ і, яка реагує на появу високої температури 

або пожежі і формує сигнал тривоги, що передається через модуль радіозв’язку за 

протоколом ZigBee, WiFi до інших модулів і пункту управління сонячною 

електростанцією або на БПЛА, який моніторить стан модулів сонячної 

електростанції. Детальний опис способу подано у додатку В. Зазначене, а також 
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зміст розглянутих методів у главах 3.1, 3.2 дозволили виділити три основні 

функціональні блоки КФС моніторингу ФЕМСЕ, рис. 3.9– 3.11 [56].  
 

Реалізація  методу обробки даних програмно-апаратними засобами 
бортової системи управління безпілотного літального апарату при 

моніторингу дефектів фотоелектричних модулів 

 Реалізація методу ансамблювання різнопалітрових термограм та 
RGB зображень для виявлення дефектів фотоелектричних модулів. 

 

Формування RGB зображень фотоелектричних модулів із контурами 
дефектів, сегментованих за термографічними даними 

Блок 1.1. Програмно-апаратні засоби бортової системи управління  

 

 
 

Формування вхідних даних: Хі – виявлення дефектів у і-му рядку 
термограми модуля; отримання даних Х1і – підвищена температура 
байпасного діода і-го рядка; Х2і – спрацювання датчика виявлення 

пожежі у модулі. 

Визначення функції істинності режиму роботи 
фотоелектричного модуля, при Y=1 модуль 

потребує проведення протипожежних заходів, 
термінового ремонту і обслуговування, при 
Y=0 – планового ремонту і обслуговування 

 

 

Аналіз RGB зображення фотоелектричного модуля 

пошкодження 

 

 

забруднення затінення 

Протипожежні 
заходи 

 

Терміновий ремонт 
або обслуговування 

Плановий ремонт 
або обслуговування 

Блок 1.2. Програмно-апаратні засоби наземної системи управління 

Визначення режиму роботи фотоелектричного модуля відповідно до 
встановлених умов 

 
режим пожежі на 

модулі 

 

 

 

 
пожежонебезпечний 

режим 

 
режим спрацювання 

захисту 

 

Рисунок 3.9 – Функціонування програмно-апаратних засобів БПЛА 
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Блок 2. Програмно-апаратні засоби системи SCADA 

Формування логічних даних: Х1і – підвищена температура байпасного 
діода і-го рядка; Х2і – спрацювання датчика виявлення пожежі у 

модулі. 
 

Рисунок 3.10 – Функціонування програмно-апаратних засобів системи 

диспетчерського управління та збору даних SCADA 
 

 

Блок 3. Програмні засоби хмарної платформи 

1. Передавання і збереження зображень,  GPS поправок і координат 
модулів системою обміну повідомленнями на базі ZeroMQ хмарної 
платформи Microsoft Azure.  

2. Зв’язок з кіберфізичними системами різного призначення 
 

 
Рисунок 3.11 – Функціонування програмно-апаратних засобів хмарної платформи 

 

Взаємозв’язок функціональних блоків КФС покладено в основу розробки 

блок-схеми функціонування КФС моніторингу дефектів ФЕМСЕ (рис. 3.12), 

архітектуру якої розглянуто у главі 2.2. 

 

  
 

Рисунок 3.12 – Блок-схема функціонування КФС моніторингу дефектів 

ФЕМСЕ 

 

 

Блок 1.1 Блок 1.2 Блок 2 

Блок 3 
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Схему обміну даних між складовими кіберфізичних систем моніторингу 

дефектів фотоелектричних модулів сонячних електростанцій подано на рис. 3.13. 

 

 
Рисунок 3.13 – Схема обміну даних між складовими кіберфізичних систем 

моніторингу дефектів фотоелектричних модулів сонячних електростанцій 

 

При розробці методу допускаємо, що загалом дефекти можна поділити 

відповідно до причин виникнення на такі групи: пошкодження фотоелектричних 

комірок; забруднення; затінення комірок. 

Реалізація методу функціонування КФС моніторингу дефектів ФЕМСЕ 

здійснюється відповідно розглянутій блок-схемі при застосуванні ЗНМ з anchor-

free архітектурою. 
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 Зробимо опис поблочного функціонування. Перший блок. Після запуску 

БПЛА, налаштування маршруту, отримання поправок високоточного 

позиціонування GPS RTK, врахування даних лазерного далекоміра бортовий 

комп’ютер здійснює візування камер на ФЕМСЕ під кутом, що мінімізує вплив 

відблисків. На основі обробки бортових датчиків встановлюється два раціональні 

температурні діапазони термографічної зйомки при яких на двоколірній палітрі 

чорно-білого зображення найкраще виділяються великі дефекти, більші за 

фотоелектричний елемент і на триколірній палітрі з «гарячим червоним кольором» 

найкраще виділяються дефекти за розмірами менше одного фотоелектричного 

елемента. Проводиться зйомка на RGB і тепловізійну камери. 

Здійснюється ансамблювання зображень у 2 етапи. Перший етап – 

мультимодельне ансамблювання термограм з використанням математичної моделі 

класифікації дефектів за відносною площею, селективної фільтрації та 

селективного комбінування результатів роботи моделі згорткової нейронної 

мережі YOLOv12m-seg. Другий етап – крос-модальна інтеграція даних шляхом 

заміни червоного каналу RGB зображення контурами сегментованих дефектів для 

створення композиційного термо-RGB зображення. 

Релевантні зображення в спектрі GB з контурами дефектів передаються до 

наземного ноутбука обробки даних БПЛА, де на основі постобробки визначається 

номер рядка ФЕМСЕ з дефектами, Хі.  

На наземній системі управління здійснюється визначення функції істинності 

режиму роботи фотоелектричного модуля, при Y=1 модуль потребує проведення 

протипожежних заходів, термінового ремонту і обслуговування, при Y=0 – 

планового ремонту і обслуговування. Надалі оператором проводиться аналіз RGB 

зображення фотоелектричного модуля з метою уточнення заходів утримання 

ФЕМСЕ, а саме потребує модуль термінового або планового ремонту, 

обслуговування залежно чи спрацював захист байпасними діодами чи ні. Сигнал 

пожежа виробляється автоматично у системі диспетчерського управління при 

загоранні модуля. 
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У третьому блоці програмні засоби хмарної платформи забезпечують 

передавання і збереження зображень, GPS поправок і координат модулів на основі 

системи обміну повідомленнями ZeroMQ хмарної платформи Microsoft Azure.  

Для встановлення пожежонебезпечного режиму роботи ФЕМСЕ необхідно 

застосовувати відеокамеру RGB, тепловізійну камеру IR, аналізувати їх 

фотознімки і термограми ФЕМСЕ, а також нагрів байпасних діодів, спрацювання 

датчиків пожежі модуля.  

Відповідно функціонування SCADA з встановленням пожежонебезпечного 

режиму визначається за умови наявності сукупності таких важливих ознак 

моніторингу ФЕМСЕ як: 

наявність дефектів на встановленому рядку термограми модуля; 

відсутність підвищення температури байпасного діоду відповідно 

встановленому рядку термограми модуля. 

При цьому модуль має дефекти і потребує заміни. Якщо додатково до 

зазначених ознак візуально виявлено затінення або забруднення, то потребує 

відповідного усунення причини затінення або здійснення обслуговування модуля. 

Дані з датчиків ФЕМСЕ можна отримати з використанням даних системи 

SCADA шляхом дообладнання розподільної коробки контролером з модулем WiFi, 

ZegBee з передачею даних до наземного сервера. 

Для підтвердження ефективності запропонованого методу було 

змодельовано обробку реальних даних, що надходять від RGB камери, тепловізора 

та ЗНМ, що виконує розпізнавання дефектів фотоелектричних модулів, рис. 3.14 

(фото зроблено автором на сонячній електростанції). 

    
Рисунок 3.14. Зображення з IR, RGB камер та з виходу програмного модуля на 

базі моделі згорткової нейронної мережі YOLOv12m-seg 
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Вхідні дані представляли собою структури формату JSON, що включали 

перелік виявлених дефектів, а також логічні дані від датчиків про підвищену 

температуру байпасних діодів, загорання модуля. 

На основі логіки, закладеної у ДНФ, виконувалося автоматичне визначення 

пожежонебезпечного стану. При плановому обслуговуванні ФЕМСЕ система 

SCADA отримує результати аналізу зображень з БПЛА (після обробки ЗНМ), а 

також дані з датчиків температури байпасних діодів, сенсорної лінії виявлення 

пожежонебезпечної температури ФЕМСЕ. Отримані дані обробляються відповідно 

до заданої ДНФ. При виконанні умови Y=1 SCADA автоматично генерує тривогу 

про пожежонебезпечний режим роботи ФЕМСЕ.  

Система диспетчерського управління та збору даних SCADA забезпечує такі 

функції в КФС моніторингу ФЕМСЕ: 

1. Збір та обробка даних: прийом та обробка термографічних зображень з 

БПЛА через хмарний сервер, збір даних з датчиків температури байпасних діодів, 

сенсорної лінії, вироблення сигналу тривоги про пожежонебезпечний режим або 

підвищену температуру ФЕМСЕ. 

2. Аналіз даних на основі ДНФ: визначення стану модулів ФЕМСЕ 

відповідно до заданої логічної функції, класифікація дефектів за типами та 

ступенем небезпеки. 

3. Візуалізація даних моніторингу: відображення термограм модулів 

ФЕМСЕ, відображення RGB-зображень модулів ФЕМСЕ, відображення 

електричних параметрів у вигляді графіків та діаграм. 

4. Генерація тривоги та повідомлень: автоматичне формування тривоги при 

виявленні пожежонебезпечних режимів, відправлення повідомлень технічному 

персоналу, ведення журналу подій. 

5. Формування звітів: створення звітів про стан ФЕМСЕ, формування 

рекомендацій щодо обслуговування або заміни модулів, статистична обробка 

даних моніторингу. 
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Використання ДНФ для формалізації умов видачі тривоги забезпечує високу 

точність виявлення дефектів та зниження ймовірності хибних спрацювань системи. 

При плановому обстеженні будуть виявлені дефекти одного або декількох 

елементів відповідних рядків у ФЕМСЕ, які є потенційно пожежонебезпечні, але 

температура яких не перевищить поріг загорання через спрацювання байпасних 

діодів. Також будуть виявлені і дефекти частини одного елемента або декількох 

елементів, що матимуть температуру вищу за поріг загорання, але недостатню для 

зміни електричних параметрів для спрацювання діодів. Такий режим є 

пожежонебезпечним і потребував забезпечення автоматичного виявлення, що 

реалізується програмним продуктом SCADA відповідно (3.8) при застосуванні 

датчиків і сенсорної лінії у ФЕМСЕ.  

Отже, рішення задачі реалізується розробленим методом, етапи якого 

включають зміст розглянутих методів отримання і обробки програмними засобами 

зображень, а також логічну обробку даних для виявлення пожежі, 

пожежонебезпечного режиму роботи ФЕМСЕ, режиму спрацювання захисту та 

встановлення причини дефекту за сукупністю ознак. 

Розроблений метод дозволяє автоматизувати процес моніторингу ФЕМСЕ та 

зменшити час реакції на виникнення потенційно небезпечних ситуацій. 

Впровадження запропонованої КФС моніторингу дозволить підвищити безпеку 

експлуатації ФЕМСЕ та запобігти виникненню пожеж. Отже, уперше розроблено 

метод функціонування кіберфізичних систем моніторингу дефектів 

фотоелектричних модулів сонячних електростанцій.  

 

3.5. Висновки до третього розділу 

 

1. Удосконалено метод обробки даних програмно-апаратними засобами 

бортової системи управління БПЛА при моніторингу дефектів фотоелектричних 

модулів, що відрізняється уведенням моделі визначення оптимального напрямку 

візування камер з використанням формули Родрігеса для автоматичного 

позиціонування та мінімізації впливу сонячних відблисків на основі високоточного 
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геопросторового позиціонування GPS RTK, застосовано ансамблювання 

різнопалітрових термограм та RGB зображень, з використанням просторової 

роздільної здатності зображення та формули гаверсинуса реалізовано перетворення 

піксельних координат виявлених дефектів у географічні координати з передачею 

результатів у форматі обміну даними JSON/KML. Це дозволяє досягти 

сантиметрової точності позиціонування дефектів, зменшити обсяг переданої з 

бортової до наземної системи управління інформації завдяки обробці її на борту та 

передачі лише релевантних зображень. 

2. Встановлено, що при оцінці дефектів ФЕМСЕ за термограмами важливо 

поєднувати виявлення дефектів одного або декількох фотоелементів або їх цілого 

рядка або всього ФЕМСЕ на двоколірній чорно-білій термограмі з виявленням 

дефектів як частини фотоелемента при більшій насиченості червоного на 

триколірній термограмі. Зазначене актуалізує процес ансамблювання термограм з 

різною палітрою кольорів.   

3. Удосконалено метод ансамблювання різнопалітрових термограм та RGB 

зображень для виявлення дефектів фотоелектричних модулів, який на першому 

етапі мультимодельного ансамблювання термограм відрізняється розробкою 

математичної моделі класифікації дефектів за їх відносною площею щодо площі 

одного фотоелемента. Це покладено в основу селективної фільтрації детекцій 

окремо для двоколірних і триколірних термограм та подальшого селективного 

комбінування результатів сегментації, отриманих за допомогою моделі згорткової 

нейронної мережі YOLOv12m-seg, що запобігає втраті пожежонебезпечних 

«гарячих точок» поблизу великих дефектів типу перегрітих рядків 

фотоелектричного модуля. На другому етапі крос-модальної інтеграції даних 

уведено постобробку із заміною даних у червоному каналі RGB зображення на 

контури сегментованих дефектів термограм для створення композиційного термо-

RGB зображення, що забезпечило релевантність передачі даних з БПЛА на наземну 

систему управління зі скороченням загального часу обробки даних з одного модуля 

на 32 %, а також підвищено середню точність виявлення пожежонебезпечних 

дефектів на 2-3%. 
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4. Уперше розроблено метод функціонування кіберфізичних систем 

моніторингу дефектів фотоелектричних модулів сонячних електростанцій. Новизна 

методу полягає у реалізації концепції периферійно-хмарної обробки даних шляхом 

розподілу функцій між такими складовими: бортовою системою управління БПЛА, 

яка забезпечує ансамблювання та передавання релевантних зображень 

фотоелектричних модулів у зелено-синьому спектрі з червоною лінією обрису 

дефектів, сегментованих за термографічними даними; наземною системою 

управління, що виконує визначення номера дефектного рядка фотоелектричного 

модуля та перевірку істинності режиму його роботи на основі встановленої 

сукупності інформативних ознак; системою диспетчерського управління та збору 

даних, яка забезпечує передавання логічних змінних стану датчиків модулів на 

наземну систему управління; хмарним сервісом, який забезпечує передавання та 

збереження зображень, GPS-поправок і координат модулів через систему обміну 

повідомленнями, побудовану на хмарній платформі Microsoft Azure. Це дозволяє 

отримати значення інтегрального показника точності та повноти виявлення 

дефектів не менше 90 %, розрізнити режими роботи фотоелектричних модулів як 

пожежа, пожежна небезпека, спрацювання захисту, що покращує автоматизацію 

процесу моніторингу фотоелектричних модулів сонячних електростанцій та 

підвищує їх пожежну безпеку експлуатування. 

5. Обґрунтовано вибір програмно-апаратних засобів на базі БПЛА DJI Matrice 

300 RTK, камери DJI Zenmuse H20T та бортового комп'ютера Nvidia Jetson AGX 

Orin 32GB. Система забезпечує автономний моніторинг, обробку даних у 

реальному часі та передачу лише релевантної інформації на наземну систему, що 

значно знижує навантаження на канали зв'язку. 

6. Запропоновано алгоритм визначення оптимального напрямку візування 

тепловізійної камери з використанням лазерного далекоміра, що дозволяє 

мінімізувати вплив сонячних відблисків та підвищити точність тепловізійного 

аналізу. Алгоритм враховує геометрію панелі, положення Сонця та інші фактори 

для корекції кута зйомки. 
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7. У дослідженні з 212 ФЕМСЕ власноруч отримано 600 зображень трьох 

видів: RGB, дво та триколірні палітри термограм для кожного модуля. Для 

навчання застосовано підхід transfer learning, за яким базова модель YOLOv12m-

seg, попередньо навчена на великій базі даних COCO, була донавчена на власному 

наборі зображень фотоелектричних модулів. Це дозволило використати вже 

сформовані в моделі знання про загальні візуальні ознаки об’єктів (контури, форми 

дефектів) і переналаштувати її лише на характерні дефекти сонячних панелей. 

Таким чином, навіть при обмеженій кількості зображень модель змогла досягти 

високої точності без ризику перенавчання. Відсутність перенавчання 

підтверджується стабільними кривими втрат і високими показниками якості, що 

свідчить про ефективність моделі. Отже, за умови використання трансферного 

навчання, збалансованості класів і розширення даних через аугментацію, обсяг 

зображень 200 модулів у різних палітрах з кількістю дефектів у кожному до 5 шт. 

є достатнім для донавчання ЗНМ та забезпечення достовірних результатів 

експерименту. 

 

 

Основні результати розділу опубліковані у працях [54; 56; 57; 115; 117]. 
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РОЗДІЛ 4. 

 РЕЗУЛЬТАТИ ЕКСПЕРИМЕНТАЛЬНИХ ДОСЛІДЖЕНЬ КІБЕРФІЗИЧНИХ 

СИСТЕМ МОНІТОРИНГУ ДЕФЕКТІВ ФОТОЕЛЕКТРИЧНИХ МОДУЛІВ 

СОНЯЧНИХ ЕЛЕКТРОСТАНЦІЙ 

 

 

4.1.  Експериментальне дослідження ефективності різних версій моделей 

YOLO для задачі моніторингу дефектів фотоелектричних модулів  

 

Для проведення комплексного аналізу та порівняльної оцінки моделей 

нейронних мереж, що застосовуються для обробки зображень використані різні 

показники ефективності, що дозволяють кількісно оцінити ефективність моделей у 

задачах детектування та класифікації об'єктів на зображеннях. Нижче наведено 

основні метрики, використані в дослідженні. 

Complete Intersection over Union (CIoU) – це функція втрат, яка 

використовується для оцінки точності визначення об'єктів. На відміну від 

звичайного Intersection over Union (IoU), CIoU враховує як ступінь перекриття між 

передбаченим і справжнім обмежувальними боксами, а й відстань між їхніми 

центрами, і навіть співвідношення сторін цих боксів. Це дозволяє більш точно 

оцінювати якість передбачень моделі 

𝐶𝑙𝑂𝑈 =  𝐼𝑜𝑈 −  𝜌2(𝑏,𝑏𝑔𝑡)
𝑐2  +  𝛼𝑣     (4.1) 

де 𝐼𝑜𝑈 – ступінь перекриття детектованого об'єкта та цільового об'єкта; 𝜌 - 

Евклідова відстань між центрами боксів, px; 𝑐 - довжина діагоналі, px; 𝛼 и 𝑣 – 

коефіцієнти корекції, що впливають на точність та повноту моделі. 

Використання 𝐶𝑙𝑂𝑈 дозволяє мінімізувати вплив різних факторів, таких як 

різниця у розмірах та співвідношеннях сторін об'єктів, що робить цю метрику 

особливо корисною у задачах детектування об'єктів з різними масштабами та 

орієнтаціями. 
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Оцінку ефективності навченої моделі здійснюють на зовнішній незалежній 

розміченій вибірці, яку називають тестовою. Прогнозовані дані порівнюють з 

правильними (ground truth) мітками, що наносилися експертом, для обчислення 

метрик продуктивності моделі. Метрики продуктивності моделі обчислюються на 

основі підрахунку результатів статистичних тестів. Для одного тестового зразка 

можливі 4 результати статистичного тесту [48; 66]: 

1) правильно позитивний результат (True Positive, або скорочено TP), тобто в 

тестовому зразку дійсно присутній об’єкт і його розпізнано; 

2) неправильно негативний результат (False Negative, або скорочено FN), 

тобто в тестовому зразку дійсно присутній об’єкт, але його не було розпізнано; 

3) правильно негативний результат (True Negative, або скорочено TN), тобто 

в тестовому зразку дійсно не присутній об’єкт, але його і не було розпізнано; 

4) неправильно позитивний результат (False Positive, або скорочено FР), 

тобто в тестовому зразку дійсно не присутній об’єкт. 

Важливими характеристиками моделі аналізу даних вважаються чутливість, 

специфічність, точність, частота помилок першого та другого роду, правильність, 

збалансована правильність та F1-міра. На основі цих характеристик приймають 

рішення про придатність моделі до практичного використання. 

Повнота (Recall) – це метрика, яка вимірює частку правильно детектованих 

об'єктів із усіх фактично присутніх об'єктів цільового класу на зображенні. Повнота 

показує, як добре модель виявляє всі необхідні об'єкти. Вона обчислюється за 

такою формулою: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑇𝑃
(𝑇𝑃 + 𝐹𝑁)

.      (4.2) 

Специфічність (або True Negative Rate) – кількість правильно негативних 

результатів, поділена на реальну кількість негативних зразків, тобто 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  𝑇𝑁𝑅 =  𝑇𝑁
(𝐹𝑃 + 𝑇𝑁)

.     (4.3) 

Точність (або Precision) – кількість правильно позитивних результатів, 

поділена на загальну кількість позитивних прогнозів, тобто 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃
(𝑇𝑃 + 𝐹𝑃)

.      (4.4) 
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Висока точність моделі вказує на те, що модель рідше робить помилкові 

спрацювання, що є важливим при детектуванні рідкісних або, наприклад, 

пожежонебезпечних дефектів. 

Частота помилок першого роду (або False Positive Rate) – кількість 

неправильно позитивних результатів, поділена на загальну кількість правильно 

негативних результатів, тобто 

𝐹𝑃𝑅 =  𝐹𝑃
(𝐹𝑃 + 𝑇𝑁)

.       (4.5) 

Частота помилок другого роду (або False Negative Rate) – кількість хибно 

негативних, поділена на загальну кількість істинно позитивних, тобто 

𝐹𝑁𝑅 =  𝐹𝑁
(𝐹𝑁 + 𝑇𝑃)

.       (4.6) 

Середня величина AP (Mean Average Precision) 𝑚𝐴𝑃 є середнє значення 𝐴𝑃 

для всіх класів об'єктів, присутніх в задачі. Вона обчислюється за формулою 

𝑚𝐴𝑃 =  1
𝑛

 ∑𝑖 = 1𝑛𝐴𝑃𝑖     (4.7) 

де 𝑛 – кількість класів, шт.; 𝐴𝑃𝑖 – середня точність для i-го класу, %. 

Міра 𝑚𝐴𝑃 є основним показником, що використовується для порівняння 

різних моделей та алгоритмів, що застосовуються у задачах мультикласового 

детектування об'єктів. 

F1 Score – це гармонійне середнє між точністю (Precision) та повнотою 

(Recall), яке дозволяє збалансовано оцінити обидва показники. F1 Score 

обчислюється за формулою 

𝐹1 =  2 · 𝑃𝑜𝑠𝑝𝑟𝑒𝑑·𝑅𝑒𝑐
𝑃𝑜𝑠𝑝𝑟𝑒𝑑+𝑅𝑒𝑐

,       (4.8) 

Цей показник є особливо корисним у ситуаціях, коли необхідно знайти 

компроміс між точністю та повнотою, особливо якщо важливо враховувати як 

помилкові спрацювання, так і пропущені об'єкти. Наведена метрика дає 

можливість проведення об'єктивної оцінки ефективності детектування з 

використанням нейромережевого алгоритму. 

Із застосуванням розглянутих показників вирішена задача вибору найбільш 

ефективної моделі згорткової нейронної мережі. Для забезпечення коректного 
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функціонування КФС моніторингу дефектів ФЕМСЕ необхідно здійснити вибір 

моделі нейронної мережі, яка може забезпечити детектування дефектів при 

обмежених обчислювальних ресурсах в реальному часі обробки даних. У рамках 

цього дослідження було обрано ЗНМ, що зумовлено її високою ефективністю в 

розпізнаванні об'єктів на зображеннях, що перевершує показники інших 

архітектур. Основними критеріями для вибору архітектури нейронної мережі є: 

точність детекції (mAP): частка правильно детектованих об'єктів; 

час обробки одного зображення: показник, що визначає можливість 

детектування в реальному часі; 

повнота (Recall): здатність моделі виявляти всі дефекти; 

F1 Score: гармонійне середнє між точністю та повнотою, що відображає 

загальний рівень якості моделі. 

У версіях YOLOv9, YOLOv10, YOLOv11, YOLOv12 у порівнянні з YOLOv5, 

YOLOv8 впроваджено більш глибокі та складні архітектури з покращеною 

здатністю до узагальнення та точнішої детекції дрібних об'єктів. Ці моделі 

використовують передові методи, такі як сконцентровані механізми уваги, глибокі 

з'єднання та покращені функції втрат, що дозволяють їм досягати високих 

показників ефективності. 

Важливим елементом є функція втрат, яка вимірює розбіжність між 

передбаченнями моделі та реальними мітками. Вона складається з компонентів, що 

відповідають за втрати при локалізації (box loss), класифікації (class loss) та 

додаткових метрик для покращення точності.  

В кожній новій версії впроваджуються додаткові блоки в архітектуру або 

повністю змінюють її частину. Наприклад, в YOLOv9 впроваджуються новаторські 

методи, такі як програмована градієнтна інформація (PGI) та узагальнена 

ефективна мережа агрегації шарів (GELAN), що забезпечує суттєві покращення в 

ефективності, точності та адаптивності. Ці технології допомагають зберігати 

важливу інформацію через глибокі шари мережі, що сприяє надійному 

генеруванню градієнтів і покращенню збіжності та продуктивності моделі. У той 

же час, технологія GELAN оптимізує використання параметрів і обчислювальну 



 
 

138 
 
ефективність, дозволяючи гнучко інтегрувати різні обчислювальні блоки [76; 79; 

82]. 

YOLOv10 пропонує вже інші покращення в порівнянні з попередником, це 

досягається за рахунок зміни підходу для обробки результатів та оптимізації 

архітектури. У YOLOv10 для усунення надлишкових прогнозів розроблено підхід 

із використанням послідовних подвійних призначень під час навчання. Це не лише 

спрощує процес передбачень, але й значно знижує затримку, роблячи модель більш 

ефективною для застосувань у реальному часі [86–90]. 

Одним із головних нововведень YOLOv11 є впровадження модуля Cross-

Stage Partial with Spatial Attention (C2PSA) [11]. Цей модуль поєднує переваги 

перехресного етапу з просторовою увагою, що дозволяє моделі краще 

фокусуватися на релевантних частинах зображення [51]. Це особливо корисно при 

виявленні дрібних об'єктів. Крім того, YOLOv11 оптимізує використання 

графічних процесорів під час навчання та інференсу [72]. Завдяки цій оптимізації 

модель демонструє зниження затримки до 25 % порівняно з YOLOv10, що робить 

її більш придатною для застосувань, де важлива швидкість обробки. Ще одним 

важливим покращенням є зменшення кількості параметрів моделі без втрати 

точності. Це досягається завдяки вдосконаленій архітектурі, яка ефективніше 

використовує обчислювальні ресурси, дозволяючи моделі працювати швидше та 

споживати менше пам'яті [101; 105]. 

У моделях YOLOv12 забезпечено ще більше покращення характеристик. 

З метою порівняння версій проведено їх навчання за допомогою сервісу 

Google Colab та бібліотеки Roboflow. Після цього налаштовувалась модель, 

використовуючи методи з пакету Ultralytics. Для прикладу наведено процес 

навчання YOLOv12 на 150 епохах у табл. 4.1. З таблиці 4.1 видно, що система в 

реальному часі показує номер поточної епохи та загальну кількість епох 

тренування (20/150 – 30/150). Втрата для локалізації контурів сегментованих 

дефектів (Box Loss) зменшується з 1.290 до 1.142, що свідчить про покращення 

точності локалізації. Втрати класифікації (Cls Loss) також поступово зменшуються, 

що вказує на стабільне покращення якості розпізнавання. 
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Таблиця 4.1 – Епохи навчання YOLOv12m-seg на вибраних епохах (15-22 з 

150). 
Епоха Box 

Loss 
Cls 

Loss 
DFL Loss Instances mAP50 mAP50-95 Час (с) 

20/150 1.290 0.836 1.122 26 0.850 0.520 2.95 

21/150 1.265 0.822 1.110 25 0.862 0.533 2.88 

22/150 1.241 0.808 1.104 23 0.868 0.540 2.76 

23/150 1.228 0.792 1.099 22 0.872 0.546 2.80 

24/150 1.213 0.779 1.088 20 0.877 0.552 2.77 

25/150 1.197 0.768 1.078 21 0.882 0.560 2.73 

26/150 1.185 0.754 1.071 20 0.886 0.568 2.71 

27/150 1.176 0.742 1.065 19 0.889 0.574 2.69 

28/150 1.163 0.731 1.059 18 0.894 0.580 2.66 

29/150 1.151 0.719 1.054 18 0.897 0.586 2.63 

30/150 1.142 0.710 1.048 17 0.900 0.592 2.61 

 

Показники mAP50 та mAP50-95 демонструють зростання точності 

відповідно з 85 % до 90 % та з 52 % до 59 %, що підтверджує ефективність навчання 

моделі на цьому діапазоні епох. Ця інформація дозволяє слідкувати за процесом 

навчання, щоб у випадку перенавчання чи інших помилок можна було визначити 

номер епохи для зупинки. Порівняння результатів навчених моделей різних версій 

сімейства YOLO наведені в табл. 4.2 [112]. 

Таблиця 4.2 – Порівняння результатів навчених моделей YOLO 
Модель precision recall mAP50 Час навчання (хв) 

YOLOV5 0, 92 0,90 0,86 55 

YOLOV8 0,91 0,88 0, 83 45 

YOLOv9 0.94 0.80 0.90 59 

YOLOv10 0.94 0.86 0.90 132 

YOLOv11 0.96 0.95 0.93 106 

YOLOv12 0.97 0.96 0.95 118 

 

Результати дослідження свідчать про те, що кожна нова версія моделі 

сімейства YOLO демонструє поступове покращення якості, але не в ефективності, 
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що підтверджується зростанням основних метрик: precision, recall, середньої 

точності mAP50, при погіршенні часу навчання. Проте процес навчання 

проводиться завчасно. Враховуючи всі перелічені фактори, YOLOv12 була обрана 

як найбільш придатна модель для виконання завдань моніторингу дефектів 

ФЕМСЕ.  

 

4.2. Оцінка технічних характеристик та можливостей апаратних засобів 

кіберфізичних систем моніторингу 

 

Структура КФС включає апаратні та програмні компоненти, які 

забезпечують управління, моніторинг і обробку даних. Для керування польотом 

БПЛА використовується вбудований польотний контролер DJI A3 Pro Flight 

Controller, також може застосовуватись польотний модуль з відкритою 

архітектурою типу NXP RDDRONE-FMUK66 FMU, який інтегрує дані від 

гіроскопа, акселерометра, GPS RTK та інших сенсорів. Польотний контролер 

забезпечує стабілізацію польоту, точне позиціонування.  

Для отримання зображень високої роздільної здатності використовується 

камера DJI Zenmuse H20T, яка поєднує RGB, тепловізійний сенсор та лазерний 

далекомір. Ця камера інтегрована з бортовим комп'ютером Nvidia Jetson AGX Orin 

32GB, що дозволяє виконувати обробку зображень і виявлення дефектів у 

реальному часі. Основні характеристики камери наведено в таблиці 4.3. 

Таблиця 4.3 – Технічні характеристики камери DJI Zenmuse H20T 
Компонент Технічні характеристики Призначення 

Модель DJI Zenmuse H20T Візуальний та тепловізійний аналіз 
фотоелектричних модулів. 

Розрішення RGB: 12 МП, тепловізор: 
640×512 пікселів 

Висока деталізація зображень для точного 
виявлення дефектів. 

Інтерфейс USB 3.0 Швидка передача даних до бортового 
комп'ютера. 

Кут огляду RGB: 82°, тепловізор: 57° Широке покриття для ефективного 
моніторингу. 

Додаткові 
функції 

Лазерний далекомір (дальність 
до 1200 м) 

Вимір відстані та точне позиціонування 
камери. 
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Для обробки даних і виконання алгоритмів машинного навчання 

використовується бортовий комп'ютер Nvidia Jetson AGX Orin 32GB. Він 

забезпечує високу продуктивність для роботи з моделлю YOLOv12m-seg та іншими 

алгоритмами комп'ютерного зору. Технічні характеристики комп'ютера наведено в 

таблиці 4.4. 

Таблиця 4.4 – Технічні характеристики бортового комп'ютера 

Компонент Технічні характеристики Призначення 
Модель Nvidia Jetson AGX Orin 32GB Обробка зображень, виконання 

алгоритмів машинного навчання. 
Процесор 12-ядерний Arm Висока обчислювальна потужність для 

нейромережевого алгоритму. 
Графічний 
процесор 

Графічний 2048-ядерний 
NVIDIA, 64 Tensor ядра 
роздільності, навчання моделей. 

Прискорення AI обчислень, процесор 
Ampere з підтримкою обробка зображень 
високої CUDA 

Оперативна 
пам'ять 

32 ГБ LPDDR5 Швидкий доступ до даних. 

Операційна 
система 

Ubuntu 20.04/22.04 LTS. Платформа для розгортання система на 
базі L4T програмного забезпечення AI/ML 

Інтерфейси  4x USB 3.2, 1x USB-C,  Підключення до камер, сенсорів, HDMI 
2.1, 3x DP 1.4a, моніторів та інших 
пристроїв. Gigabit Ethernet, GPIO 

 

Для передачі даних між БПЛА та наземною станцією використовується 

радіомодуль DJI OcuSync Enterprise, який забезпечує стабільний зв'язок на відстані 

до 15 км. Технічні характеристики модуля наведено в таблиці 4.5. 

Таблиця 4.5 – Технічні характеристики комунікаційного модуля 
Компонент Технічні 

характеристики 
Призначення 

Модель DJI OcuSync 
Enterprise 

Двосторонній зв'язок між БПЛА та наземною 
станцією. 

Частота 2,4 ГГц та 5,8 ГГц Надійна передача даних у різних умовах. 
Максимальна 
дальність 

До 15 км Забезпечення зв'язку на великих відстанях. 

Швидкість передачі До 50 Мбіт/с Швидка передача відео та телеметрії. 
 

На борту може бути приймач мережі WiFi для отримання даних 

(ідентифікатора модуля, даних датчиків) від ФЕМСЕ. 

Для зберігання та аналізу даних використовується хмарна платформа 

Microsoft Azure з розгорнутим сервером ZeroMQ. Це дозволяє оперативно 
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отримувати дані, зберігати їх та аналізувати через веб-інтерфейс. Наземна станція 

управління включає ноутбук з програмним забезпеченням DJI Ground Station Pro та 

пульт дистанційного керування DJI Smart Controller. Технічні характеристики 

наземної станції наведено в таблиці 4.6.  

Таблиця 4.6 –Технічні характеристики наземної станції управління 
Компонент Технічні 

характеристики 
Призначення 

Програмне 
забезпечення 

DJI Ground Station Pro Планування місій, моніторинг польоту, аналіз 
даних. 

Пульт керування DJI Smart Controller Ручне керування БПЛА, перегляд зображень у 
реальному часі. 

Екран 5,5-дюймовий HD-
дисплей 

Відображення телеметрії, зображень та карт. 

Інтерфейси WiFi, USB, HDMI Підключення до додаткових пристроїв. 
 

Наземна станція управління включає компоненти: 

ноутбук з програмним забезпеченням DJI Ground Station Pro, який забезпечує 

зв'язок із БПЛА через радіомодуль HGD-TELEM433 (діапазон 433 МГц). Це 

дозволяє оператору відстежувати параметри польоту, маршрутизацію та 

отримувати телеметрію в реальному часі; 

пульт дистанційного керування DJI Smart Controller для ручного керування 

БПЛА у разі необхідності. 

Для виявлення дефектів фотоелектричних модулів система використовує 

відеопотік із камери DJI Zenmuse H20T, який передається на бортовий комп’ютер 

Nvidia Jetson AGX Orin 32GB. Тут відбувається обробка даних за допомогою 

алгоритмів ЗНМ, що дозволяє автоматично виявляти дефекти (наприклад, гарячі 

точки, механічні пошкодження, забруднення) [17; 18; 38; 39; 95]. 

Результати аналізу (фотознімки з позначеними дефектами, GPS-координати 

або ідентифікатор ФЕМСЕ) передаються на наземну систему, яка далі надсилає їх 

у систему обміну повідомленнями, реалізовану на базі ZeroMQ та розгорнуту на 

хмарній платформі Microsoft Azure. Ці дані зберігаються у форматі JSON, 

надходять до наземного комп’ютера SCADA і можуть використовуватись для 

подальшого аналізу ефективності роботи сонячної електростанції, планування 

ремонтних робіт на основі локалізації дефектів, моніторингу стану панелей у 
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динаміці (наприклад, після погодних явищ або технічного обслуговування). Таким 

чином, система забезпечує повний цикл: від збору даних до їх аналізу та прийняття 

управлінських рішень. 

КФС моніторингу дефектів ФЕМСЕ базується на сучасних апаратних та 

програмних рішеннях, таких як БПЛА DJI Matrice 300 RTK, камера DJI Zenmuse 

H20T, бортовий комп'ютер Nvidia Jetson AGX Orin 32GB, система диспетчерського 

управління та збору даних SCADA наземного комп’ютера управління сонячної 

електростанції. Ці компоненти забезпечують високу точність виявлення дефектів, 

швидку обробку даних та ефективне управління системою. Використання 

алгоритмів машинного навчання, таких як YOLO, дозволяє автоматизувати процес 

моніторингу та підвищити його ефективність. 

 

4.3. Результати експериментальних досліджень виявлення дефектів 

фотоелектричних модулів сонячних електростанцій 

 

Функціонування КФС моніторингу дефектів ФЕМСЕ передбачає як 

автоматичне виявлення дефектів, так і застосування переносного тепловізора для 

уточнення даних. У ході експерименту було проведено порівняння кількості 

автоматично виявлених дефектів сонячних електростанцій ХНУ, а також наземної 

сонячної електростанції в Хмельницькій області, приватних сонячних 

електростанцій із застосуванням БПЛА і моделі згорткової нейронної мережі 

YOLOv12m-seg з даними ручного моніторингу переносними камерами 

спостереження, пірометра, рис. 4.1 (фото зроблено автором на сонячній 

електростанції). 

При цьому ручне виявлення вважалось за достовірне, оскільки забезпечувало 

найкраще розрішення. 

Для аналізу було використано 20 зображень різних фотоелектричних модулів 

з різних електростанцій при різних типах дефектів і без них. На кожному 

зображенні виявлялось до 5 дефектів, рис. 4.2 (фото зроблено автором на сонячних 

електростанціях). 
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Рисунок 4.1 – Дослідження ФЕМСЕ на різних сонячних електростанціях  

 

Рисунок 4.2 – Зображення виявлених дефектів фотоелектричних модулів 

 

А також не виявлялись програмою хибні дефекти на цих зображеннях, рис. 

4.3 (фото зроблено автором на сонячних електростанціях). 
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Рисунок 4.3 – Зображення хибних дефектів фотоелектричних модулів 
 

Результати аналізу представлені у табл. 4.7. 

Таблиця 4.7 – Результати порівняльного аналізу виявлених дефектів 

фотоелектричних модулів сонячної електростанції ХНУ, наземної сонячної 

електростанції в Хмельницькій області. 
Номер 

модуля з 
дефектами 

 
 
 

Кількість 
автоматично 
виявлених 
дефектів 

 
 

Реальна 
кількість 
дефектів 

виявлених 
вручну 

 

Різниця між 
фактичними та 
автоматичним 

значеннями 
кількості дефектів 

  

Метрики класифікації: 
істинно позитивні (TP), 
хибно негативні (FN), 

істинно негативні (TN) та 
хибно позитивні (FP) 

відповіді 
1 2 2 0 TP 
2 3 3 0 TP 
3 1 0 1 FP 
4 5 4 1 FP 
5 0 0 0 TN 
6 0 0 0 TN 
7 1 1 0 TP 
8 2 2 0 TP 
9 4 4 0 TP 
10 3 3 0 TP 
11 4 4 0 TP 
12 3 3 0 TP 
13 1 1 0 TP 
14 3 3 0 TP 
15 1 1 0 TP 
16 0 0 0 TN 
17 2 4 2 FN 
18 4 4 0 TP 
19 3 3 0 TP 
20 2 2 0 TP 

сума 
дефектів 

44 
 

47 
 

4 
 

TP=14; FP=2; FN=1; TN=3 

 

На основі порівняльного аналізу автоматичних та ручних вимірювань 

дефектів фотоелектричних модулів були розраховані показники якості роботи 
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алгоритму розпізнавання. Істинно позитивні результати (True Positive) 

становлять 14 випадків, що відображає кількість коректно визначених реальних 

дефектів. Істинно негативних результатів (True Negative) зафіксовано 3, 

алгоритм правильно ідентифікував відсутність дефекту у тих випадках, де його 

дійсно не було. Хибнопозитивні результати (False Positive) становлять 2 випадки 

і модель визначила дефект там, де він відсутній. Хибнонегативні результати 

(False Negative) виявлено у 1 випадку, система пропустила реальний дефект, хоча 

він був присутній на модулі. 

На основі цих значень розраховано інтегральні метрики ефективності. 

Загальна точність класифікації (Accuracy) дорівнює 85 %, що показує частку 

правильних відповідей серед усіх можливих результатів. Точність визначення 

дефектів (Precision) склала 88 %, що свідчить про частку коректно виявлених 

реальних дефектів серед усіх випадків, коли алгоритм повідомив про їх 

наявність. Повнота виявлення (Recall) дорівнює 93 % і характеризує здатність 

системи знаходити всі реальні дефекти без пропусків. Гармонійний середній 

показник точності та повноти, інтегральна метрика F1-score становить 90 %, що 

демонструє збалансованість між здатністю моделі уникати пропусків та хибних 

спрацювань. 

Такий результат свідчить про загалом високі показники якості 

автоматичного розпізнавання, з перевагою в точності знаходження реальних 

дефектів, що може бути успішно використано для моніторингу дефектів ФЕМСЕ 

та оперативної діагностики, наприклад, попередження про пожежонебезпечний 

стан модулів. 

 

4.4. Оцінка впливу різних факторів на ефективність моніторингу дефектів 

фотоелектричних модулів сонячних електростанцій 

 

В ході експерименту було проведено серію випробувань з метою визначення 

оптимальних технологічних параметрів, таких як висота польоту, швидкість 

польоту, які забезпечують максимальну точність виявлення дефектів в режимі 
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реального часу. Параметри були вибрані таким чином, щоб досягти балансу між 

просторовою роздільною здатністю зображень, забезпечити виявлення найменших 

дефектів і ефективністю охоплення території, що обстежується, що особливо 

важливо при моніторингу великих сонячних електростанцій. При цьому 

визначення оцінки дефектів, виявлених датчиками БПЛА здійснювалось по 

методиці [122]. При цьому застосовувався БПЛА типу Dji Matrict-300, рис. 4.4 

(фото зроблено автором). 

 

 
Рисунок 4.4 – Загальний вигляд БПЛА Dji Matrict-300 

 

Польоти проводилися в автоматичному режимі. При проведенні 

експериментів щодо підбору висоти польоту, для забезпечення точності даних, 

швидкість польоту була зафіксована на оптимальному рівні. В цьому випадку 

швидкість польоту становила 5 м/с. В ході експерименту були отримані такі середні 

результати, що подані в таблиці 4.8. 

Таблиця 4.8 – Вплив висоти польоту на точність детектування, повноту, 

точність класифікації  
Висота 

польоту (м) 
Точність 

детектування (%) 
Повнота 
(%) 

Точність 
класифікації (%) 

5 м 98 % 97 % 96 % 
10 м 93 % 92% 91 % 
15 м 84 % 80 % 81 % 

 

При висоті польоту 5-15 метрів досягалася максимальна точність 

детектування, що забезпечувало можливість виявлення дефектів окремих 

елементів фотоелектричних модулів, що проявляються у вигляді «гарячих точок». 
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Однак низька висота значно є небезпечною, особливо для дахових електростанцій, 

де є щогли, кабелі даних, дроти електромереж. Висота 10 метрів є мінімально 

безпечною для тих умов, що проводилась зйомка. Досліджувані швидкості польоту 

було обрано експертним шляхом 2 м/с, 5 м/с, 10 м/с. У ході експерименту були 

отримані такі середні результати за швидкістю польоту, представлені в таблиці 4.9. 

Таблиця 4.9 – Вплив швидкості польоту на точність детектування, повноту, 

точність класифікації  

Швидкість 
польоту 

(м/с) 

Точність 
детектування 

(%) 
Повнота 

(%) 

Точність 
класифікації 

(%) 
2 м/с 98 % 97 % 96 % 
5 м/с 93 % 92% 92 % 
10 м/с 85 % 82 % 83 % 

 

При швидкості 2 м/с точність детектування максимальна. Це пов'язано з 

мінімальним рівнем розмиття зображення та високою деталізацією, що забезпечує 

ефективне розпізнавання об'єктів. Однак зі збільшенням швидкості до 5 м/с 

точність знижується, що також забезпечує прийнятні результати. При подальшому 

збільшенні швидкості до 10 м/с точність ще більше знижується, що пов'язано зі 

збільшенням розмиття та зниженням якості даних. На великих швидкостях камера 

не встигає зафіксувати об'єкти із необхідною чіткістю, що веде до зниження 

точності. Повнота, що відбиває здатність системи знаходити всі об'єкти, також 

змінюється залежно від швидкості польоту. Повнота, як і точність, знижується 

через погіршення якості зображення зі збільшенням швидкості, що зменшує 

ймовірність виявлення всіх об'єктів зображення. Точність класифікації. Як і в 

попередніх метриках, збільшення швидкості призводить до значної втрати якості 

розпізнавання, що негативно впливає на результати класифікації. 

Середньоквадратичне відхилення кожної метрики показує варіативність 

даних на різних швидкостях. На низькій швидкості 2 м/с відхилення мінімальне, 

що свідчить про високу стабільність даних. На швидкості 5 м/с відхилення дещо 

зростає, але все ще залишається в межах допустимої стабільності. На швидкості 10 

м/с відхилення значно зростає, що вказує на нестабільність та збільшення помилок 

при розпізнаванні об'єктів через високий рівень розмиття. 
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Важливим фактором є стан атмосфери, прозорість, наявність гідрометеорів, 

час доби і загалом контрастність [114]. Врахування і оцінка зазначеного розглянуто 

далі. Освітленість суттєво впливає на роботу програмно-апаратних засобів БПЛА 

під час аналізу зображень для розпізнавання дефектів сонячних панелей на RGB 

знімках і термограмах. Експерименти, проведені в різних умовах освітленості 

вранці, вдень та ввечері продемонстрували значний вплив рівня освітленості на 

роботу системи. У ході всіх експериментів БПЛА був налаштований політ на висоті 

10 м зі швидкістю 5 м/с, що забезпечувало однакові умови для порівняння даних. У 

таблиці 4.10 представлена метрики роботи системи залежно від рівня освітленості. 

Таблиця 4.10 – Ефективність роботи системи залежно від рівня 

освітленості 
Метрика Ранок День Вечір 

точність детектування (%) 71 93 72 

повнота (%) 79 92 80 

точність класифікації (%) 72 91 74 

F1-міра (%) 70 91 73 

 

Як видно, найкращі результати спостерігаються в денний час, коли всі 

метрики показують максимальні значення. При низькому рівні ранкової 

освітленості, нагрів панелей незначний, система відчувала складності з 

детектуванням дефектів. Зниження рівня контрастності зображень, тіні у ранкові 

години ускладнило завдання алгоритмів виділення дефектів. В денний час система 

показала найкращі результати.  

Яскраве природне освітлення забезпечувало тепловий контраст, що сприяло 

кращому розпізнаванню дефектів і особливо невеликих гарячих точок. Вечірня 

зйомка супроводжувалася зменшенням рівня освітленості та появою довгих тіней, 

що ускладнювало процес розпізнавання, проте результати кращі за ранішній час. 

Додатково було проведено дослідження впливу хмарності на ефективність 

моніторингу.  

У табл. 4.11 представлені результати роботи системи за ясної та хмарної 

погоди.  
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Таблиця 4.11 – Метрики точності роботи системи у різних погодних умовах 

Погодні 
умови 

Точність 
детектування (%) 

Повнота 
(%) 

Точність 
класифікації (%) F-міра 

ясна 93 92 91 91 
хмарна 78 73 72 72 

 

За ясної погоди система демонструвала найвищі показники точності, близькі 

до результатів, отриманих під час денної зйомки. Однак за хмарної погоди та 

зйомки в тіні від хмар спостерігалося значне зниження точності, що пов'язано з 

неефективністю роботи фотоелектричних модулів, наявністю тіней. 
 

4.5. Висновки до четвертого розділу 

 

1. Проведено експериментальне дослідження ефективності різних версій 

моделей YOLO (v5 – v12) для задачі моніторингу дефектів. Найкращі результати 

показала модель YOLOv12m-seg, яка поєднує високу точність з прийнятним часом 

навчання, що робить її оптимальним вибором для впровадження в реальних 

умовах. 

2. Результати експериментального визначення оптимальних 

технологічних параметрів програмно-апаратних засобів на базі БПЛА показали, що 

найкращий баланс між точністю виявлення, площею охоплення та безпекою 

польоту досягається при висоті польоту 10 метрів і швидкості 5 м/с.  

3. Результати дослідження впливу умов освітлення та хмарності 

підтвердили, що максимальна точність виявлення та повнота досягаються при 

денній зйомці в ясну погоду. Ранкове та вечірнє освітлення, а також хмарність 

негативно впливають на ефективність моніторингу. Порівняльний аналіз 

результатів автоматичного виявлення дефектів з даними, отриманими при ручному 

моніторингу, виявив високий ступінь відповідності, підтверджуючи доцільність 

застосування згорткової нейронної мережі в КФС для моніторингу дефектів 

сонячних панелей. Точність визначення дефектів (Precision) склала 88 %, що 

свідчить про частку коректно виявлених реальних дефектів серед усіх випадків, 

коли алгоритм повідомив про їх наявність. Повнота виявлення (Recall) дорівнює 93 
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% і характеризує здатність системи знаходити всі реальні дефекти без пропусків. 

Застосування моделі згорткової нейронної мережі YOLOv12m-seg за 

архітектурним принципом anchor-free з комплексуванням методів і алгоритмів 

обробки зображень дозволяє отримати значення інтегрального показника точності 

та повноти виявлення дефектів за метрикою F1-score більше 90 %, що свідчить про 

достатньо високі показники якості автоматичного розпізнавання, з перевагою в 

точності знаходження реальних дефектів. 

4. Розроблена система автоматичного оповіщення про появу підвищеної і 

пожежонебезпечної температури на поверхні фотоелектричного модуля сонячної 

електростанції має потенціал для оперативного виявлення дефектів, включаючи 

оцінку протипожежного стану модулів в умовах реальної експлуатації, 

забезпечуючи при цьому високу точність та надійність отриманих результатів. 

5. У роботі не проводилося порівняння із архітектурами типу Faster R-

CNN, EfficientDet чи ResNet, оскільки мета дослідження полягала не у створенні 

універсального детектора, а у розробці прикладного методу ансамблювання 

різнопалітрових термограм та RGB-зображень для виявлення пожежонебезпечних 

дефектів фотоелектричних модулів у межах кіберфізичних систем моніторингу. 

Модель YOLOv12m-seg на момент проведення дослідження є актуальним 

представником класу anchor-free SOTA рішень, який за численними публікаціями 

демонструє продуктивність на рівні Faster R-CNN чи EfficientDet на стандартних 

наборах COCO і VOC. 

 

Основні результати розділу опубліковані у працях [112; 114]. 
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ВИСНОВКИ 
 

У дисертації розв’язано актуальну задачу щодо розробки методів і засобів 

моніторингу дефектів ФЕМСЕ з використанням програмно-апаратних засобів 

БПЛА і системи диспетчерського управління і на цій основі формування 

архітектури КФС з розподіленою обробкою даних моніторингу.  

У роботі отримано такі наукові та практичні результати: 

Проведено аналіз сучасного стану досліджень щодо моніторингу дефектів 

ФЕМСЕ, що дозволило узагальнити класифікацію їх основних моделей, 

виокремити найбільш пожежонебезпечні. У результаті аналізу засобів моніторингу 

дефектів ФЕМСЕ обґрунтовано вибір програмно-апаратних засобів на базі БПЛА 

DJI Matrice 300 RTK, камери DJI Zenmuse H20T та бортового комп'ютера Nvidia 

Jetson AGX Orin 32GB, що забезпечує автономний моніторинг, обробку даних у 

реальному часі та передачу лише релевантної інформації на наземну систему 

управління БПЛА. 

Розроблено архітектуру КФС моніторингу дефектів ФЕМСЕ на основі 

концепції периферійно-хмарного розподілу обробки даних. Це дозволило 

здійснити раціональне опрацювання даних із забезпеченням низької затримки 

обробки даних, а також утримувати камери за заданим кутом спостереження, 

автоматично налаштовувати насиченість колірної палітри зображення, визначати 

режими роботи фотоелектричних модулів.  

Удосконалено метод обробки даних програмно-апаратними засобами 

бортової системи управління БПЛА при моніторингу дефектів фотоелектричних 

модулів. При цьому досягнуто сантиметрову точність позиціонування дефектів, 

зменшено обсяг переданої інформації з бортової до наземної системи управління 

БПЛА завдяки обробці її на борту та передачі лише релевантних зображень. 

Удосконалено метод ансамблювання різнопалітрових термограм та RGB 

зображень для виявлення дефектів фотоелектричних модулів. Це дозволило  

скоротити загальний час обробки даних з одного ФЕМСЕ на 32 %, а також 

підвищити середню точність виявлення пожежонебезпечних дефектів на 2-3 %. 
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Розроблено метод функціонування кіберфізичних систем моніторингу 

дефектів ФЕМСЕ. При цьому отримано значення інтегрального показника точності 

та повноти виявлення дефектів не менше 90 %. Також забезпечено  розрізнення 

режимів роботи ФЕМСЕ як пожежа, пожежна небезпека, спрацювання захисту, що 

покращує автоматизацію процесу моніторингу фотоелектричних модулів та 

підвищує їх пожежну безпеку експлуатування. 

Проведено експериментальні дослідження розробленої архітектури КФС 

моніторингу дефектів ФЕМСЕ. Встановлено, що для задачі моніторингу дефектів 

найкращі результати показала модель YOLOv12m-seg, яка поєднує високу точність 

з прийнятним часом навчання, що робить її оптимальним вибором для 

впровадження в реальних умовах. Найкращий баланс між точністю виявлення, 

площею охоплення та безпекою польоту досягається при висоті польоту 10 метрів 

і швидкості 5 м/с. Порівняльний аналіз результатів автоматичного виявлення 

дефектів з даними, отриманими при ручному моніторингу, виявив високу ступінь 

відповідності, точність визначення дефектів склала 88 %, повнота виявлення 93 %, 

що підтвердило доцільність застосування YOLOv12m-seg в КФС для моніторингу 

дефектів сонячних панелей. 

Розроблена система автоматичного оповіщення про появу підвищеної і 

пожежонебезпечної температури на поверхні ФЕМСЕ, яка забезпечує оцінку 

протипожежного стану модулів в умовах реальної експлуатації. 
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ДОДАТОК В. 

 

Система автоматичного оповіщення про появу підвищеної і 

пожежонебезпечної температури на поверхні фотоелектричного модуля сонячної 

електростанції  

 

Алгоритм застосування методу виявлення пожежонебезпечного режиму 

роботи фотоелектричних модулів сонячних електростанцій, що розглянутий у 

роботі, передбачає застосована КФС моніторингу ФЕМСЕ виявлення 

пожежонебезпечного режиму роботи та встановлення причини за сукупністю ознак 

з використанням системи диспетчерського управління та збору даних SCADA, що 

забезпечує генерацію тривоги та повідомлень: автоматичне формування тривоги 

при виявленні пожежонебезпечних режимів, відправлення повідомлень технічному 

персоналу, ведення журналу подій.  

Проте застосування БПЛА з відповідними датчиками і камерами 

спостереження, програмним забезпеченням лише умовно можна характеризувати 

як автономне функціонування, що здійснюється лише при запуску БПЛА. Для 

реалізації цілодобового автономного моніторингу необхідно обладнання ФЕМСЕ 

наземними датчиками і системою передачі даних для роботи системи SCADA. 

З цією метою була розроблена система автоматичного оповіщення про появу 

підвищеної і пожежонебезпечної температури на поверхні ФЕМСЕ, яка може бути 

використана в системах сонячної генерації електроенергії для автономного 

цілодобового виявлення локального перегріву, що може призвести до пожежі. 

Відомо, що моніторинг стану сонячних електростанцій ґрунтується на 

вимірюваннях електричних параметрів, таких як напруга, струм, потужність 

постійного струму на рівні ланцюжків стрінгів, що складаються із послідовно 

з'єднаних фотоелектричних модулів. Такі вимірювання виконуються в блоці 

суматорі, до якого підключаються ланцюжки стрінги, при їх паралельному 

з'єднання для досягнення необхідної сили струму. У такій стрінговій технології 



187 
 
моніторингу стану джерела енергії втрачається інформація про працездатність 

окремих фотоелектричних модулів усередині стрінгів. При цьому температура 

поверхні модуля може через виникнення дефекту підвищитись до 

пожежонебезпечної. Для запобігання цьому виробники встановлюють захисні 

байпасні діоди у розподільчу коробку з тильної сторони кожного ФЕМСЕ. Проте 

байпасний діод спрацьовує зазвичай при появі дефекту, перегріву одного або 

більше фотоелектричних елементів. При незначній площі перегріву в декілька 

десятків міліметрів квадратних діод не спрацює, а панель в такій гарячій точці може 

розплавитись і спалахнути. 

Близько 25 % дефектів фотоелектричних модулів становлять гарячі точки, як 

результат перегріву невеликих ділянок модулів через затінення, забруднення, 

пошкодження [25; 90]. У науковій публікації [25] було досліджено 

фотоелектричний модуль, зокрема розсіяння тепла одним окремим елементом 

модуля з різним відсотком затінення в діапазоні від 1 % до 100 %, тобто 

змодельовано утворення гарячої точки. Було досліджено зв'язок температури 

гарячої точки та типу дефектів сонячних елементів (наприклад, точкових дефектів 

та площинних дефектів) з вихідною потужністю модуля. Результати моделювання 

показали, що температура гарячої точки модуля обернено корелює з дефектною 

площею сонячного елемента та позитивно корелює з вихідною потужністю модуля. 

Якщо байпасний діод не спрацював, тоді температуру гарячої точки можна 

розрахувати за формулою 

𝑇ℎ𝑜𝑡−𝑠𝑝𝑜𝑡  =  𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡  +  𝐼2 · 𝑅𝑐𝑒𝑙𝑙
ℎ · 𝐴

    (В.1) 

де: 𝑇ℎ𝑜𝑡−𝑠𝑝𝑜𝑡 - температура гарячої точки, °C; 𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡 - температура 

навколишнього середовища, °C; 𝐼 - струм через комірку, 𝐴; 𝑅𝑐𝑒𝑙𝑙 - опір дефекту 

фотоелемента, Ом; ℎ - коефіцієнт тепловіддачі, Вт/м²·К ; 𝐴 - площа затінення або 

тепловиділення, м². 

Результати розрахунку показують, що найбільшу небезпеку становить 

невеликий локальний дефект, який не активує байпасний діод, але викликає 

екстремальний перегрів. Формула є теоретичною і дає завищені результати, тому у 



188 
 
публікації [25] проведено було моделювання фізичного процесу нагріву частини 

фотоелектричного елемента методом скінченних елементів з використанням 

програми ANSYS. При цьому отримано результати підвищення температури 

гарячої точки до 170-290 °C для площі ушкодження 1-5 мм2, що може бути 

причиною займання поверхні модуля. 

Для створення сонячної електростанції потрібно з'єднати тисячі 

фотоелектричних модулів. У разі несправності одного з модулів виникає проблема 

обчислення його місця розташування в масиві з метою подальшого очищення 

робочої поверхні (від забруднення), ремонту або заміни несправного модуля. 

Традиційний блок суматор не дає інформацію, який із модулів є джерелом 

порушення номінального режиму в масиві модулів, в кращому випадку видаються 

дані про зменшення генерації, проте розрізнити це зменшення досить складно і 

залежить від кількості модулів у стрінгу. А якщо дефектний рядок фотоелементів 

модуля то практично автоматично виявити це не можливо, а тим більше одного 

елементу і взагалі не можливо частини елементу без додаткового обладнання 

модуля системою автоматичного сповіщення про появу пожежонебезпечної 

температури на поверхні фотоелектричного модуля. 

Патент US 8,665,575 B2 [78] описує сонячний модуль із захистом від 

перегріву, в якому використовуються термічні перемикачі для відключення струму 

в разі перевищення температури. Для виявлення перегріву та запобігання виходу з 

ладу фотоелектричного модуля останній оснащений системою захисту від 

перегріву, яка містить теплові датчики, з'єднані з електричними перемикачами для 

короткого замикання сонячних елементів у разі дефекту. Проте таке рішення 

потребує додаткового енергоспоживання та має складну електронну реалізацію, а 

також втручання в схему з’єднання елементів модуля, що суттєво в рази збільшує 

вартість модуля, при цьому не наводяться дані щодо будови, опису датчиків, 

перемикачів, можливості їх промислового виробництва і порівняльної вартості 

удосконалення. 

Патент US 11,876,484 B2 [79] пропонує оптичну систему моніторингу 

перегріву сонячної панелі на основі термохромного шару, що дозволяє візуально 
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оцінити стан модуля. Технічне рішення містить множину термохромних датчиків 

температури, термічно з'єднаних з різними ділянками сонячної панелі. 

Термохромні датчики температури налаштовані на зміну кольору у відповідь на 

тепло, що генерується сонячними елементами в різних ділянках сонячної панелі. 

Система керування налаштована на виявлення кольорів термохромних датчиків 

температури, визначення температури кожної ділянки сонячної панелі з 

використанням камер або додаткових датчиків розрізнення кольорів та вимикання 

сонячної панелі у відповідь на визначення того, що температура принаймні однієї 

ділянки сонячної панелі перевищує заданий температурний поріг. Однак таке 

рішення потребує встановлення відеокамер або датчиків дискретних розрізнення 

кольорів і для автоматичного формування тривожного сигналу потребуватиме 

застосування штучного інтелекту, що також таке рішення зробить 

неконкурентноспроможним через суттєве збільшення вартості і складності 

реалізації особливо автоматичного режиму вироблення тривоги. 

В патенті RU 2803314 C1 описано сонячний модуль з блоком діагностики, 

оснащений датчиками Холла у розподільній коробці байпасних діодів. При цьому 

в технічному рішенні застосована система передачі сповіщень по радіоканалу, 

додатково дообладнується мікроконтролером фотоелектричні модулі. Система 

дозволяє відслідковувати електричний режим діодів, а значить їх спрацювання і 

відключення рядків модуля через появу щонайменше одного дефектного елементу 

в рядку. Однак не контролює температурний стан окремих елементів їх всієї площі, 

оскільки не має розподілених термодатчиків по всій поверхні модуля. Це по суті не 

забезпечує автоматичне сповіщення про появу пожежонебезпечної температури на 

поверхні фотоелектричного модуля, а сповіщає про появу підвищеної температури 

модуля через спрацювання байпасного діода, що не є пожежонебезпечним 

режимом. Дане технічне рішення обрано за прототип. 

Жодне з вищенаведених рішень не забезпечує ефективного розподіленого 

контролю температури всієї площі модуля. Описані системи захисту не гарантують 

спрацювання при наявності дефекту лише частини фотоелектричного модуля, 

оскільки орієнтовані на виявлення дефектів перегріву одного або більше 
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фотоелектричного елемента модуля. Усі розглянуті рішення мають недоліки в 

контексті оперативного та локалізованого виявлення гарячих точок. Розглянуті 

технічні рішення потребують втручання в електричну схему фотоелектричних 

модулів, що ускладнить доопрацювання модулів, які вже використовуються. 

В основу розробленої системи поставлено задачу – шляхом удосконалення 

конструкції фотоелектричного модуля без втручання в його електричну схему 

забезпечити автоматичне формування тривожного сигналу при появі підвищеної і 

пожежонебезпечної температури модуля. 

Розроблена система автоматичного оповіщення про появу підвищеної і 

пожежонебезпечної температури на поверхні фотоелектричного модуля сонячної 

електростанції складається із закріпленими на його тильній стороні блоку 

мікроконтролера, модуля прийомопередавача, розподільної коробки з байпасними 

діодами і відрізняється додатково встановленим датчиком температури байпасних 

діодів, досягнення якою рівня температури відкритого діода спричиняє вироблення 

мікроконтролером сигналу тривоги про появу підвищеної температури модуля, 

також додатково встановленими розподіленими сенсорними лініями у вигляді 

закріпленого тонкого мідного дроту по всій площі рядків фотоелектричних 

елементів модуля, обрив якого через розплавлення пластикової основи модуля або 

загорання її внаслідок утворення гарячої точки навіть невеликої, меншої за площу 

одного елемента фотоелектричного модуля спричиняє вироблення 

мікроконтролером сигналу тривоги про появу пожежонебезпечної температури 

модуля, при цьому сигнали тривоги передаються на блок прийомопередавача і далі 

на пост моніторингу, рис. В.5. 

Технічним результатом пропонованої системи є забезпечення автоматичного 

оповіщення про появу підвищеної і пожежонебезпечної температури на поверхні 

всіх фотоелектричних модулів сонячної електростанції. Технічний результат 

досягається тим, що на тильній стороні фотоелектричного модуля з кроком 5 мм 

або менше прокладається тонкий мідний дріт діаметром 0,05 – 0,07 мм з 

температурою плавлення менше 500 0С і еквівалентною масою розривного зусилля 

до 50 гр. Кожна розподілена сенсорна лінія дроту перекриває з тильної сторони 
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один рядок фотоелектричних елементів, що шунтується відповідним байпасним 

діодом. Кожна лінія з'єднана з мікроконтролером, який вимірює опір дроту. 
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Рисунок В.1 – Структура система автоматичного оповіщення про появу 

підвищеної і пожежонебезпечної температури на поверхні фотоелектричного 

модуля сонячної електростанції: 1 - фотоелектричний модуль прямокутної форми; 

2 - модуль прийомопередавача з стандартом передачі даних ZigBee, WiFi, 

приклеєний до корпусу фотоелектричного модуля; 3 - розподільна коробка з 

байпасними діодами та додатково встановленим температурним сенсором; 4 - 

модуль мікроконтролера, що з’єднаний з термодатчиком байпасних діодів, а 

також із кінцями дроту сенсорних ліній, кожна з яких прокладається з тильної 

сторони модуля вздовж рядка фотоелектричних елементів, що шунтується одним 

байпасним діодом; 5 - фотоелектричні елементи модуля, які об’єднані в рядки; 6 - 

три паралельні сенсорні лінії тонкого мідного дроту, прокладені горизонтально з 

тильної сторони фотоелектричного модуля 

 

При перегріві в точці, що не спричиняє спрацювання байпасного діода, але 

створює локальну високу температуру (гарячу точку), пластик основи панелі 

розплавляється і займається. Або від створеного натягу більше 50 гр через 

плавлення основи фотоелектричного модуля, або від утворення полум’я дріт 

сенсорної лінії у цій зоні руйнується, що призводить до розриву кола і зростанню 
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електричного опору з кількох кілоом до мегаом. Мікроконтролер реєструє зміну 

температури байпасних діодів і (або) опору сенсорної лінії і формує сигнал 

тривоги, який передається через модуль радіозв’язку за протоколом ZigBee, WiFi 

до інших модулів і пункту управління або на БПЛА, який моніторить стан модулів 

сонячної електростанції. 

Система може бути реалізована на будь-якому типі сонячних панелей з 

байпасними діодами шляхом монтажу на етапі виробництва або під час 

модернізації. Не потребує втручання в електричну схему фотоелектричного 

модуля, проста в реалізації та сумісна з протоколом ZigBee передачі даних на 

відносно значні відстані. Забезпечує високу надійність і дешевизну у виробництві. 

Орієнтовні затрати не перевищать 10 % вартості фотоелектричної панелі. 

Таким чином, сукупність всіх викладених вище ознак створює умови для 

реалізації ФЕМСЕ із системою автоматичного оповіщення про появу підвищеної і 

пожежонебезпечної температури на їх поверхні в складі системи SCADA. 


